"use strict"; var __decorate = (this && this.__decorate) || function (decorators, target, key, desc) { var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d; if (typeof Reflect === "object" && typeof Reflect.decorate === "function") r = Reflect.decorate(decorators, target, key, desc); else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r; return c > 3 && r && Object.defineProperty(target, key, r), r; }; var __metadata = (this && this.__metadata) || function (k, v) { if (typeof Reflect === "object" && typeof Reflect.metadata === "function") return Reflect.metadata(k, v); }; var ApiDataService_1; Object.defineProperty(exports, "__esModule", { value: true }); exports.ApiDataService = void 0; const common_1 = require("@nestjs/common"); const axios_1 = require("axios"); const uuid = require("uuid"); const globalConfig_service_1 = require("../globalConfig/globalConfig.service"); const upload_service_1 = require("../upload/upload.service"); let ApiDataService = ApiDataService_1 = class ApiDataService { constructor(uploadService, globalConfigService) { this.uploadService = uploadService; this.globalConfigService = globalConfigService; this.logger = new common_1.Logger(ApiDataService_1.name); } async chatFree(prompt, systemMessage, messagesHistory) { const { openaiBaseUrl = '', openaiBaseKey = '', openaiBaseModel, } = await this.globalConfigService.getConfigs([ 'openaiBaseKey', 'openaiBaseUrl', 'openaiBaseModel', ]); const key = openaiBaseKey; const proxyUrl = openaiBaseUrl; let requestData = []; if (systemMessage) { requestData.push({ "role": "system", "content": systemMessage }); } if (messagesHistory && messagesHistory.length > 0) { requestData = requestData.concat(messagesHistory); } else { requestData.push({ "role": "user", "content": prompt }); } const options = { method: 'POST', url: `${proxyUrl}/v1/chat/completions`, headers: { "Content-Type": "application/json", "Authorization": `Bearer ${key}`, }, data: { model: openaiBaseModel || 'gpt-3.5-turbo-0125', messages: requestData, }, }; try { const response = await (0, axios_1.default)(options); common_1.Logger.log(`全局模型调用成功, 返回结果: ${response === null || response === void 0 ? void 0 : response.data.choices[0].message.content}`); return response === null || response === void 0 ? void 0 : response.data.choices[0].message.content; } catch (error) { console.log('error: ', error); } } async dalleDraw(inputs, messagesHistory) { var _a, _b, _c, _d; common_1.Logger.log('开始提交 Dalle 绘图任务 ', 'DrawService'); const { apiKey, model, proxyUrl, prompt, extraParam, timeout, onSuccess, onFailure } = inputs; const size = (extraParam === null || extraParam === void 0 ? void 0 : extraParam.size) || '1024x1024'; let result = { answer: '', fileInfo: '', status: 2 }; try { const options = { method: 'POST', url: `${proxyUrl}/v1/images/generations`, timeout: timeout, headers: { 'Content-Type': 'application/json', Authorization: `Bearer ${apiKey}`, }, data: { model: model, prompt: prompt, size, }, }; const response = await (0, axios_1.default)(options); common_1.Logger.debug(`请求成功${JSON.stringify(response.data.data[0])}`); common_1.Logger.debug(`请求状态${JSON.stringify(response.status)}`); const url = response.data.data[0].url; try { const filename = `${Date.now()}-${uuid.v4().slice(0, 4)}.png`; common_1.Logger.debug(`------> 开始上传图片!!!`, 'DrawService'); result.fileInfo = await this.uploadService.uploadFileFromUrl({ filename, url: url }); common_1.Logger.debug(`图片上传成功,URL: ${result.fileInfo}`, 'DrawService'); } catch (error) { common_1.Logger.error(`上传图片过程中出现错误: ${error}`, 'DrawService'); } let revised_prompt_cn; try { revised_prompt_cn = await this.chatFree(`根据提示词{${response.data.data[0].revised_prompt}}, 模拟AI绘画机器人的语气,用中文回复,告诉用户已经画好了`); } catch (error) { revised_prompt_cn = `${prompt} 绘制成功`; common_1.Logger.error("翻译失败: ", error); } result.answer = revised_prompt_cn; result.status = 3; onSuccess(result); return; } catch (error) { result.status = 5; onFailure(result); const status = ((_a = error === null || error === void 0 ? void 0 : error.response) === null || _a === void 0 ? void 0 : _a.status) || 500; console.log('draw error: ', JSON.stringify(error), status); const message = (_d = (_c = (_b = error === null || error === void 0 ? void 0 : error.response) === null || _b === void 0 ? void 0 : _b.data) === null || _c === void 0 ? void 0 : _c.error) === null || _d === void 0 ? void 0 : _d.message; if (status === 429) { result.text = '当前请求已过载、请稍等会儿再试试吧!'; return result; } if (status === 400 && message.includes('This request has been blocked by our content filters')) { result.text = '您的请求已被系统拒绝。您的提示可能存在一些非法的文本。'; return result; } if (status === 400 && message.includes('Billing hard limit has been reached')) { result.text = '当前模型key已被封禁、已冻结当前调用Key、尝试重新对话试试吧!'; return result; } if (status === 500) { result.text = '绘制图片失败,请检查你的提示词是否有非法描述!'; return result; } if (status === 401) { result.text = '绘制图片失败,此次绘画被拒绝了!'; return result; } result.text = '绘制图片失败,请稍后试试吧!'; return result; } } }; ApiDataService = ApiDataService_1 = __decorate([ (0, common_1.Injectable)(), __metadata("design:paramtypes", [upload_service_1.UploadService, globalConfig_service_1.GlobalConfigService]) ], ApiDataService); exports.ApiDataService = ApiDataService;