Jun Xu and Hang Li. AdaRank: a boosting algorithm for information retrieval. **Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval**, 391-398,2007.
Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Hang Li. Learning to rank: from pairwise approach to listwise approach. **ICML**, 129-136, 2017.
Q. Wu, C.J.C. Burges, K. Svore and J. Gao. Adapting boosting for information retrieval measures. **Journal of Information Retrieval**, 2007.
C.J.C. Burges, R. Ragno and Q.V. Le. Learning to rank with non-smooth cost functions. **Advances in Neural Information Processing Systems**, 2006.
C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton and G. Hullender. Learning to rank using gradient descent. **Proceedings of the twenty second international conference on machine learning**, 2005.
F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank — Theorem and algorithm. **ICML**, 1192–1199, 2008.
S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya. Structured learning for non-smooth ranking losses. **SIGKDD**, 88–96, 2008.
T. Qin, T.-Y. Liu, and H. Li. A general approximation framework for direct optimization of information retrieval measures.**Technical Report, Microsoft Research**, MSR-TR-2008-164, 2008.
M. Taylor, J. Guiver, S. Robertson, and T. Minka. SoftRank: Optimising non-smooth rank metrics. **WSDM**, 77–86, 2008.
J.-Y. Yeh and J.-Y. Lin, and etc. Learning to rank for information retrieval using genetic programming. **SIGIR 2007 Workshop in Learning to Rank for Information Retrieval**, 2007.
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. **SIGIR**, 271–278, 2007.