mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-11-14 05:03:43 +08:00
alpha version
This commit is contained in:
@@ -23,15 +23,13 @@ async function handle(req: NextRequest) {
|
||||
const file = formData.get("file") as File;
|
||||
const originalFileName = file?.name;
|
||||
|
||||
const fileReader = file.stream().getReader();
|
||||
const fileData: number[] = [];
|
||||
|
||||
while (true) {
|
||||
const { done, value } = await fileReader.read();
|
||||
if (done) break;
|
||||
fileData.push(...value);
|
||||
let fileData: ArrayBuffer | undefined;
|
||||
for (const [key, value] of formData.entries()) {
|
||||
if (value instanceof File) {
|
||||
fileData = await value.arrayBuffer();
|
||||
}
|
||||
}
|
||||
|
||||
if (!fileData) throw new Error("Get file buffer error");
|
||||
const buffer = Buffer.from(fileData);
|
||||
const fileType = path.extname(originalFileName).slice(1);
|
||||
var fileName = `${Date.now()}.${fileType}`;
|
||||
|
||||
@@ -7,16 +7,15 @@ import { StableDiffusionNodeWrapper } from "@/app/api/langchain-tools/stable_dif
|
||||
import { Calculator } from "langchain/tools/calculator";
|
||||
import { WebBrowser } from "langchain/tools/webbrowser";
|
||||
import { WolframAlphaTool } from "@/app/api/langchain-tools/wolframalpha";
|
||||
import { RAGSearch } from "./rag_search";
|
||||
|
||||
export class NodeJSTool {
|
||||
private apiKey: string | undefined;
|
||||
|
||||
private baseUrl: string;
|
||||
|
||||
private model: BaseLanguageModel;
|
||||
|
||||
private embeddings: Embeddings;
|
||||
|
||||
private sessionId: string;
|
||||
private ragEmbeddings: Embeddings;
|
||||
private callback?: (data: string) => Promise<void>;
|
||||
|
||||
constructor(
|
||||
@@ -24,12 +23,16 @@ export class NodeJSTool {
|
||||
baseUrl: string,
|
||||
model: BaseLanguageModel,
|
||||
embeddings: Embeddings,
|
||||
sessionId: string,
|
||||
ragEmbeddings: Embeddings,
|
||||
callback?: (data: string) => Promise<void>,
|
||||
) {
|
||||
this.apiKey = apiKey;
|
||||
this.baseUrl = baseUrl;
|
||||
this.model = model;
|
||||
this.embeddings = embeddings;
|
||||
this.sessionId = sessionId;
|
||||
this.ragEmbeddings = ragEmbeddings;
|
||||
this.callback = callback;
|
||||
}
|
||||
|
||||
@@ -57,6 +60,9 @@ export class NodeJSTool {
|
||||
wolframAlphaTool,
|
||||
pdfBrowserTool,
|
||||
];
|
||||
if (!!process.env.NEXT_PUBLIC_ENABLE_RAG) {
|
||||
tools.push(new RAGSearch(this.sessionId, this.model, this.ragEmbeddings));
|
||||
}
|
||||
return tools;
|
||||
}
|
||||
}
|
||||
|
||||
64
app/api/langchain-tools/rag_search.ts
Normal file
64
app/api/langchain-tools/rag_search.ts
Normal file
@@ -0,0 +1,64 @@
|
||||
import { Tool } from "@langchain/core/tools";
|
||||
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
|
||||
import { BaseLanguageModel } from "langchain/dist/base_language";
|
||||
import { formatDocumentsAsString } from "langchain/util/document";
|
||||
import { Embeddings } from "langchain/dist/embeddings/base.js";
|
||||
import { RunnableSequence } from "@langchain/core/runnables";
|
||||
import { StringOutputParser } from "@langchain/core/output_parsers";
|
||||
import { Pinecone } from "@pinecone-database/pinecone";
|
||||
import { PineconeStore } from "@langchain/pinecone";
|
||||
|
||||
export class RAGSearch extends Tool {
|
||||
static lc_name() {
|
||||
return "RAGSearch";
|
||||
}
|
||||
|
||||
get lc_namespace() {
|
||||
return [...super.lc_namespace, "ragsearch"];
|
||||
}
|
||||
|
||||
private sessionId: string;
|
||||
private model: BaseLanguageModel;
|
||||
private embeddings: Embeddings;
|
||||
|
||||
constructor(
|
||||
sessionId: string,
|
||||
model: BaseLanguageModel,
|
||||
embeddings: Embeddings,
|
||||
) {
|
||||
super();
|
||||
this.sessionId = sessionId;
|
||||
this.model = model;
|
||||
this.embeddings = embeddings;
|
||||
}
|
||||
|
||||
/** @ignore */
|
||||
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
|
||||
const pinecone = new Pinecone();
|
||||
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
|
||||
const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
|
||||
pineconeIndex,
|
||||
});
|
||||
|
||||
let context;
|
||||
const returnCunt = process.env.RAG_RETURN_COUNT
|
||||
? parseInt(process.env.RAG_RETURN_COUNT, 10)
|
||||
: 4;
|
||||
const results = await vectorStore.similaritySearch(inputs, returnCunt, {
|
||||
sessionId: this.sessionId,
|
||||
});
|
||||
context = formatDocumentsAsString(results);
|
||||
console.log("[rag-search]", context);
|
||||
return context;
|
||||
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
|
||||
|
||||
// console.log("[rag-search]", input);
|
||||
|
||||
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
|
||||
// return chain.invoke(input, runManager?.getChild());
|
||||
}
|
||||
|
||||
name = "rag-search";
|
||||
|
||||
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
|
||||
}
|
||||
105
app/api/langchain/rag/search/route.ts
Normal file
105
app/api/langchain/rag/search/route.ts
Normal file
@@ -0,0 +1,105 @@
|
||||
import { NextRequest, NextResponse } from "next/server";
|
||||
import { auth } from "@/app/api/auth";
|
||||
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
|
||||
import { OpenAIEmbeddings } from "@langchain/openai";
|
||||
import { Pinecone } from "@pinecone-database/pinecone";
|
||||
import { PineconeStore } from "@langchain/pinecone";
|
||||
import { getServerSideConfig } from "@/app/config/server";
|
||||
|
||||
interface RequestBody {
|
||||
sessionId: string;
|
||||
query: string;
|
||||
baseUrl?: string;
|
||||
}
|
||||
|
||||
async function handle(req: NextRequest) {
|
||||
if (req.method === "OPTIONS") {
|
||||
return NextResponse.json({ body: "OK" }, { status: 200 });
|
||||
}
|
||||
try {
|
||||
const authResult = auth(req, ModelProvider.GPT);
|
||||
if (authResult.error) {
|
||||
return NextResponse.json(authResult, {
|
||||
status: 401,
|
||||
});
|
||||
}
|
||||
|
||||
const reqBody: RequestBody = await req.json();
|
||||
const authToken = req.headers.get("Authorization") ?? "";
|
||||
const token = authToken.trim().replaceAll("Bearer ", "").trim();
|
||||
|
||||
const pinecone = new Pinecone();
|
||||
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
|
||||
const apiKey = getOpenAIApiKey(token);
|
||||
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
|
||||
const embeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
|
||||
pineconeIndex,
|
||||
});
|
||||
const results = await vectorStore.similaritySearch(reqBody.query, 1, {
|
||||
sessionId: reqBody.sessionId,
|
||||
});
|
||||
console.log(results);
|
||||
return NextResponse.json(results, {
|
||||
status: 200,
|
||||
});
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
return new Response(JSON.stringify({ error: (e as any).message }), {
|
||||
status: 500,
|
||||
headers: { "Content-Type": "application/json" },
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
function getOpenAIApiKey(token: string) {
|
||||
const serverConfig = getServerSideConfig();
|
||||
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
|
||||
|
||||
let apiKey = serverConfig.apiKey;
|
||||
if (isApiKey && token) {
|
||||
apiKey = token;
|
||||
}
|
||||
return apiKey;
|
||||
}
|
||||
|
||||
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
|
||||
const serverConfig = getServerSideConfig();
|
||||
let baseUrl = "https://api.openai.com/v1";
|
||||
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
|
||||
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
|
||||
baseUrl = reqBaseUrl;
|
||||
if (!baseUrl.endsWith("/v1"))
|
||||
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
|
||||
console.log("[baseUrl]", baseUrl);
|
||||
return baseUrl;
|
||||
}
|
||||
|
||||
export const POST = handle;
|
||||
|
||||
export const runtime = "nodejs";
|
||||
export const preferredRegion = [
|
||||
"arn1",
|
||||
"bom1",
|
||||
"cdg1",
|
||||
"cle1",
|
||||
"cpt1",
|
||||
"dub1",
|
||||
"fra1",
|
||||
"gru1",
|
||||
"hnd1",
|
||||
"iad1",
|
||||
"icn1",
|
||||
"kix1",
|
||||
"lhr1",
|
||||
"pdx1",
|
||||
"sfo1",
|
||||
"sin1",
|
||||
"syd1",
|
||||
];
|
||||
@@ -1,16 +1,66 @@
|
||||
import { NextRequest, NextResponse } from "next/server";
|
||||
import { auth } from "@/app/api/auth";
|
||||
import { NodeJSTool } from "@/app/api/langchain-tools/nodejs_tools";
|
||||
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
|
||||
import { OpenAI, OpenAIEmbeddings } from "@langchain/openai";
|
||||
import path from "path";
|
||||
import { PDFLoader } from "langchain/document_loaders/fs/pdf";
|
||||
import { TextLoader } from "langchain/document_loaders/fs/text";
|
||||
import { CSVLoader } from "langchain/document_loaders/fs/csv";
|
||||
import { DocxLoader } from "langchain/document_loaders/fs/docx";
|
||||
import { EPubLoader } from "langchain/document_loaders/fs/epub";
|
||||
import { JSONLoader } from "langchain/document_loaders/fs/json";
|
||||
import { JSONLinesLoader } from "langchain/document_loaders/fs/json";
|
||||
import { OpenAIWhisperAudio } from "langchain/document_loaders/fs/openai_whisper_audio";
|
||||
// import { PPTXLoader } from "langchain/document_loaders/fs/pptx";
|
||||
import { SRTLoader } from "langchain/document_loaders/fs/srt";
|
||||
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
|
||||
import { Pinecone } from "@pinecone-database/pinecone";
|
||||
import { Document } from "@langchain/core/documents";
|
||||
import { PineconeStore } from "@langchain/pinecone";
|
||||
import { getServerSideConfig } from "@/app/config/server";
|
||||
import { RequestBody } from "../../tool/agent/agentapi";
|
||||
import { FileInfo } from "@/app/client/platforms/utils";
|
||||
import mime from "mime";
|
||||
import LocalFileStorage from "@/app/utils/local_file_storage";
|
||||
import S3FileStorage from "@/app/utils/s3_file_storage";
|
||||
|
||||
interface RequestBody {
|
||||
sessionId: string;
|
||||
fileInfos: FileInfo[];
|
||||
baseUrl?: string;
|
||||
}
|
||||
|
||||
function getLoader(
|
||||
fileName: string,
|
||||
fileBlob: Blob,
|
||||
openaiApiKey: string,
|
||||
openaiBaseUrl: string,
|
||||
) {
|
||||
const extension = fileName.split(".").pop();
|
||||
switch (extension) {
|
||||
case "txt":
|
||||
case "md":
|
||||
return new TextLoader(fileBlob);
|
||||
case "pdf":
|
||||
return new PDFLoader(fileBlob);
|
||||
case "docx":
|
||||
return new DocxLoader(fileBlob);
|
||||
case "csv":
|
||||
return new CSVLoader(fileBlob);
|
||||
case "json":
|
||||
return new JSONLoader(fileBlob);
|
||||
// case 'pptx':
|
||||
// return new PPTXLoader(fileBlob);
|
||||
case "srt":
|
||||
return new SRTLoader(fileBlob);
|
||||
case "mp3":
|
||||
return new OpenAIWhisperAudio(fileBlob, {
|
||||
clientOptions: {
|
||||
apiKey: openaiApiKey,
|
||||
baseURL: openaiBaseUrl,
|
||||
},
|
||||
});
|
||||
default:
|
||||
throw new Error(`Unsupported file type: ${extension}`);
|
||||
}
|
||||
}
|
||||
|
||||
async function handle(req: NextRequest) {
|
||||
if (req.method === "OPTIONS") {
|
||||
@@ -27,88 +77,70 @@ async function handle(req: NextRequest) {
|
||||
const reqBody: RequestBody = await req.json();
|
||||
const authToken = req.headers.get("Authorization") ?? "";
|
||||
const token = authToken.trim().replaceAll("Bearer ", "").trim();
|
||||
|
||||
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
|
||||
// const formData = await req.formData();
|
||||
// const file = formData.get("file") as File;
|
||||
// const originalFileName = file?.name;
|
||||
|
||||
// const fileReader = file.stream().getReader();
|
||||
// const fileData: number[] = [];
|
||||
|
||||
// while (true) {
|
||||
// const { done, value } = await fileReader.read();
|
||||
// if (done) break;
|
||||
// fileData.push(...value);
|
||||
// }
|
||||
|
||||
// const buffer = Buffer.from(fileData);
|
||||
// const fileType = path.extname(originalFileName).slice(1);
|
||||
// const fileBlob = bufferToBlob(buffer, "application/pdf")
|
||||
|
||||
// const loader = new PDFLoader(fileBlob);
|
||||
// const docs = await loader.load();
|
||||
// const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
// chunkSize: 1000,
|
||||
// chunkOverlap: 200,
|
||||
// });
|
||||
// const splits = await textSplitter.splitDocuments(docs);
|
||||
const pinecone = new Pinecone();
|
||||
// await pinecone.createIndex({
|
||||
// name: 'example-index',
|
||||
// dimension: 1536,
|
||||
// metric: 'cosine',
|
||||
// spec: {
|
||||
// pod: {
|
||||
// environment: 'gcp-starter',
|
||||
// podType: 'p1.x1',
|
||||
// pods: 1
|
||||
// }
|
||||
// }
|
||||
// });
|
||||
const pineconeIndex = pinecone.Index("example-index");
|
||||
const docs = [
|
||||
new Document({
|
||||
metadata: { foo: "bar" },
|
||||
pageContent: "pinecone is a vector db",
|
||||
}),
|
||||
new Document({
|
||||
metadata: { foo: "bar" },
|
||||
pageContent: "the quick brown fox jumped over the lazy dog",
|
||||
}),
|
||||
new Document({
|
||||
metadata: { baz: "qux" },
|
||||
pageContent: "lorem ipsum dolor sit amet",
|
||||
}),
|
||||
new Document({
|
||||
metadata: { baz: "qux" },
|
||||
pageContent: "pinecones are the woody fruiting body and of a pine tree",
|
||||
}),
|
||||
];
|
||||
const apiKey = getOpenAIApiKey(token);
|
||||
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
|
||||
console.log(baseUrl);
|
||||
const serverConfig = getServerSideConfig();
|
||||
const pinecone = new Pinecone();
|
||||
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
|
||||
const embeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName: "text-embedding-ada-002",
|
||||
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
await PineconeStore.fromDocuments(docs, embeddings, {
|
||||
pineconeIndex,
|
||||
maxConcurrency: 5,
|
||||
});
|
||||
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
|
||||
pineconeIndex,
|
||||
});
|
||||
const results = await vectorStore.similaritySearch("pinecone", 1, {
|
||||
foo: "bar",
|
||||
});
|
||||
console.log(results);
|
||||
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
|
||||
// process files
|
||||
for (let i = 0; i < reqBody.fileInfos.length; i++) {
|
||||
const fileInfo = reqBody.fileInfos[i];
|
||||
const contentType = mime.getType(fileInfo.fileName);
|
||||
// get file buffer
|
||||
var fileBuffer: Buffer | undefined;
|
||||
if (serverConfig.isStoreFileToLocal) {
|
||||
fileBuffer = await LocalFileStorage.get(fileInfo.fileName);
|
||||
} else {
|
||||
var file = await S3FileStorage.get(fileInfo.fileName);
|
||||
var fileByteArray = await file?.transformToByteArray();
|
||||
if (fileByteArray) fileBuffer = Buffer.from(fileByteArray);
|
||||
}
|
||||
if (!fileBuffer || !contentType) {
|
||||
console.error(`get ${fileInfo.fileName} buffer fail`);
|
||||
continue;
|
||||
}
|
||||
// load file to docs
|
||||
const fileBlob = bufferToBlob(fileBuffer, contentType);
|
||||
const loader = getLoader(fileInfo.fileName, fileBlob, apiKey, baseUrl);
|
||||
const docs = await loader.load();
|
||||
// modify doc meta
|
||||
docs.forEach((doc) => {
|
||||
doc.metadata = {
|
||||
...doc.metadata,
|
||||
sessionId: reqBody.sessionId,
|
||||
sourceFileName: fileInfo.originalFilename,
|
||||
fileName: fileInfo.fileName,
|
||||
};
|
||||
});
|
||||
// split
|
||||
const chunkSize = process.env.RAG_CHUNK_SIZE
|
||||
? parseInt(process.env.RAG_CHUNK_SIZE, 10)
|
||||
: 2000;
|
||||
const chunkOverlap = process.env.RAG_CHUNK_OVERLAP
|
||||
? parseInt(process.env.RAG_CHUNK_OVERLAP, 10)
|
||||
: 200;
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: chunkSize,
|
||||
chunkOverlap: chunkOverlap,
|
||||
});
|
||||
const splits = await textSplitter.splitDocuments(docs);
|
||||
// remove history
|
||||
await PineconeStore.fromDocuments(splits, embeddings, {
|
||||
pineconeIndex,
|
||||
maxConcurrency: 5,
|
||||
});
|
||||
}
|
||||
return NextResponse.json(
|
||||
{
|
||||
storeId: "",
|
||||
sessionId: reqBody.sessionId,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
@@ -140,7 +172,6 @@ function getOpenAIApiKey(token: string) {
|
||||
}
|
||||
return apiKey;
|
||||
}
|
||||
|
||||
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
|
||||
const serverConfig = getServerSideConfig();
|
||||
let baseUrl = "https://api.openai.com/v1";
|
||||
@@ -153,7 +184,25 @@ function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
|
||||
return baseUrl;
|
||||
}
|
||||
|
||||
export const GET = handle;
|
||||
export const POST = handle;
|
||||
|
||||
export const runtime = "nodejs";
|
||||
export const preferredRegion = [
|
||||
"arn1",
|
||||
"bom1",
|
||||
"cdg1",
|
||||
"cle1",
|
||||
"cpt1",
|
||||
"dub1",
|
||||
"fra1",
|
||||
"gru1",
|
||||
"hnd1",
|
||||
"iad1",
|
||||
"icn1",
|
||||
"kix1",
|
||||
"lhr1",
|
||||
"pdx1",
|
||||
"sfo1",
|
||||
"sin1",
|
||||
"syd1",
|
||||
];
|
||||
|
||||
@@ -44,6 +44,7 @@ export interface RequestMessage {
|
||||
}
|
||||
|
||||
export interface RequestBody {
|
||||
chatSessionId: string;
|
||||
messages: RequestMessage[];
|
||||
isAzure: boolean;
|
||||
azureApiVersion?: string;
|
||||
|
||||
@@ -44,6 +44,13 @@ async function handle(req: NextRequest) {
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
const ragEmbeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
|
||||
var dalleCallback = async (data: string) => {
|
||||
var response = new ResponseBody();
|
||||
@@ -62,6 +69,8 @@ async function handle(req: NextRequest) {
|
||||
baseUrl,
|
||||
model,
|
||||
embeddings,
|
||||
reqBody.chatSessionId,
|
||||
ragEmbeddings,
|
||||
dalleCallback,
|
||||
);
|
||||
var nodejsTools = await nodejsTool.getCustomTools();
|
||||
|
||||
Reference in New Issue
Block a user