Merge branch 'main' into main

This commit is contained in:
Sheng Fan
2024-04-08 16:51:00 +08:00
committed by GitHub
28 changed files with 1758 additions and 177 deletions

View File

@@ -13,6 +13,7 @@ const DANGER_CONFIG = {
hideBalanceQuery: serverConfig.hideBalanceQuery,
disableFastLink: serverConfig.disableFastLink,
customModels: serverConfig.customModels,
isEnableRAG: serverConfig.isEnableRAG,
};
declare global {

View File

@@ -2,6 +2,7 @@ import { getServerSideConfig } from "@/app/config/server";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
import { NextRequest, NextResponse } from "next/server";
import mime from "mime";
async function handle(
req: NextRequest,
@@ -13,19 +14,27 @@ async function handle(
try {
const serverConfig = getServerSideConfig();
const fileName = params.path[0];
const contentType = mime.getType(fileName);
if (serverConfig.isStoreFileToLocal) {
var fileBuffer = await LocalFileStorage.get(params.path[0]);
var fileBuffer = await LocalFileStorage.get(fileName);
return new Response(fileBuffer, {
headers: {
"Content-Type": "image/png",
"Content-Type": contentType ?? "application/octet-stream",
},
});
} else {
var file = await S3FileStorage.get(params.path[0]);
return new Response(file?.transformToWebStream(), {
headers: {
"Content-Type": "image/png",
},
var file = await S3FileStorage.get(fileName);
if (file) {
return new Response(file?.transformToWebStream(), {
headers: {
"Content-Type": contentType ?? "application/octet-stream",
},
});
}
return new Response("not found", {
status: 404,
});
}
} catch (e) {

View File

@@ -4,6 +4,7 @@ import { auth } from "@/app/api/auth";
import LocalFileStorage from "@/app/utils/local_file_storage";
import { getServerSideConfig } from "@/app/config/server";
import S3FileStorage from "@/app/utils/s3_file_storage";
import path from "path";
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
@@ -19,20 +20,14 @@ async function handle(req: NextRequest) {
try {
const formData = await req.formData();
const image = formData.get("file") as File;
const file = formData.get("file") as File;
const fileData = await file.arrayBuffer();
const originalFileName = file?.name;
const imageReader = image.stream().getReader();
const imageData: number[] = [];
while (true) {
const { done, value } = await imageReader.read();
if (done) break;
imageData.push(...value);
}
const buffer = Buffer.from(imageData);
var fileName = `${Date.now()}.png`;
if (!fileData) throw new Error("Get file buffer error");
const buffer = Buffer.from(fileData);
const fileType = path.extname(originalFileName).slice(1);
var fileName = `${Date.now()}.${fileType}`;
var filePath = "";
const serverConfig = getServerSideConfig();
if (serverConfig.isStoreFileToLocal) {

View File

@@ -10,16 +10,15 @@ import { WolframAlphaTool } from "@/app/api/langchain-tools/wolframalpha";
import { BilibiliVideoInfoTool } from "./bilibili_vid_info";
import { BilibiliVideoSearchTool } from "./bilibili_vid_search";
import { BilibiliMusicRecognitionTool } from "./bilibili_music_recognition";
import { RAGSearch } from "./rag_search";
export class NodeJSTool {
private apiKey: string | undefined;
private baseUrl: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
private sessionId: string;
private ragEmbeddings: Embeddings;
private callback?: (data: string) => Promise<void>;
constructor(
@@ -27,12 +26,16 @@ export class NodeJSTool {
baseUrl: string,
model: BaseLanguageModel,
embeddings: Embeddings,
sessionId: string,
ragEmbeddings: Embeddings,
callback?: (data: string) => Promise<void>,
) {
this.apiKey = apiKey;
this.baseUrl = baseUrl;
this.model = model;
this.embeddings = embeddings;
this.sessionId = sessionId;
this.ragEmbeddings = ragEmbeddings;
this.callback = callback;
}
@@ -66,6 +69,9 @@ export class NodeJSTool {
bilibiliVideoSearchTool,
bilibiliMusicRecognitionTool,
];
if (!!process.env.ENABLE_RAG) {
tools.push(new RAGSearch(this.sessionId, this.model, this.ragEmbeddings));
}
return tools;
}
}

View File

@@ -0,0 +1,79 @@
import { Tool } from "@langchain/core/tools";
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
import { BaseLanguageModel } from "langchain/dist/base_language";
import { formatDocumentsAsString } from "langchain/util/document";
import { Embeddings } from "langchain/dist/embeddings/base.js";
import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
export class RAGSearch extends Tool {
static lc_name() {
return "RAGSearch";
}
get lc_namespace() {
return [...super.lc_namespace, "ragsearch"];
}
private sessionId: string;
private model: BaseLanguageModel;
private embeddings: Embeddings;
constructor(
sessionId: string,
model: BaseLanguageModel,
embeddings: Embeddings,
) {
super();
this.sessionId = sessionId;
this.model = model;
this.embeddings = embeddings;
}
/** @ignore */
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
const serverConfig = getServerSideConfig();
if (!serverConfig.isEnableRAG)
throw new Error("env ENABLE_RAG not configured");
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
// const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
// pineconeIndex,
// });
const vectorStore = await QdrantVectorStore.fromExistingCollection(
this.embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: this.sessionId,
},
);
let context;
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
console.log("[rag-search]", { inputs, returnCunt });
// const results = await vectorStore.similaritySearch(inputs, returnCunt, {
// sessionId: this.sessionId,
// });
const results = await vectorStore.similaritySearch(inputs, returnCunt);
context = formatDocumentsAsString(results);
console.log("[rag-search]", { context });
return context;
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
// console.log("[rag-search]", input);
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
// return chain.invoke(input, runManager?.getChild());
}
name = "rag-search";
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
}

View File

@@ -0,0 +1,120 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAIEmbeddings } from "@langchain/openai";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
import { getServerSideConfig } from "@/app/config/server";
interface RequestBody {
sessionId: string;
query: string;
baseUrl?: string;
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
return NextResponse.json({ body: "OK" }, { status: 200 });
}
try {
const authResult = auth(req, ModelProvider.GPT);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const serverConfig = getServerSideConfig();
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const embeddings = new OpenAIEmbeddings(
{
modelName: serverConfig.ragEmbeddingModel ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
// pineconeIndex,
// });
// const results = await vectorStore.similaritySearch(reqBody.query, 4, {
// sessionId: reqBody.sessionId,
// });
const vectorStore = await QdrantVectorStore.fromExistingCollection(
embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: reqBody.sessionId,
},
);
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
const response = await vectorStore.similaritySearch(
reqBody.query,
returnCunt,
);
return NextResponse.json(response, {
status: 200,
});
} catch (e) {
console.error(e);
return new Response(JSON.stringify({ error: (e as any).message }), {
status: 500,
headers: { "Content-Type": "application/json" },
});
}
}
function getOpenAIApiKey(token: string) {
const serverConfig = getServerSideConfig();
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
let apiKey = serverConfig.apiKey;
if (isApiKey && token) {
apiKey = token;
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
baseUrl = reqBaseUrl;
if (!baseUrl.endsWith("/v1"))
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
console.log("[baseUrl]", baseUrl);
return baseUrl;
}
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@@ -0,0 +1,221 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAI, OpenAIEmbeddings } from "@langchain/openai";
import { PDFLoader } from "langchain/document_loaders/fs/pdf";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { CSVLoader } from "langchain/document_loaders/fs/csv";
import { DocxLoader } from "langchain/document_loaders/fs/docx";
import { EPubLoader } from "langchain/document_loaders/fs/epub";
import { JSONLoader } from "langchain/document_loaders/fs/json";
import { JSONLinesLoader } from "langchain/document_loaders/fs/json";
import { OpenAIWhisperAudio } from "langchain/document_loaders/fs/openai_whisper_audio";
// import { PPTXLoader } from "langchain/document_loaders/fs/pptx";
import { SRTLoader } from "langchain/document_loaders/fs/srt";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { FileInfo } from "@/app/client/platforms/utils";
import mime from "mime";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
interface RequestBody {
sessionId: string;
fileInfos: FileInfo[];
baseUrl?: string;
}
function getLoader(
fileName: string,
fileBlob: Blob,
openaiApiKey: string,
openaiBaseUrl: string,
) {
const extension = fileName.split(".").pop();
switch (extension) {
case "txt":
case "md":
return new TextLoader(fileBlob);
case "pdf":
return new PDFLoader(fileBlob);
case "docx":
return new DocxLoader(fileBlob);
case "csv":
return new CSVLoader(fileBlob);
case "json":
return new JSONLoader(fileBlob);
// case 'pptx':
// return new PPTXLoader(fileBlob);
case "srt":
return new SRTLoader(fileBlob);
case "mp3":
return new OpenAIWhisperAudio(fileBlob, {
clientOptions: {
apiKey: openaiApiKey,
baseURL: openaiBaseUrl,
},
});
default:
throw new Error(`Unsupported file type: ${extension}`);
}
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
return NextResponse.json({ body: "OK" }, { status: 200 });
}
try {
const authResult = auth(req, ModelProvider.GPT);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const serverConfig = getServerSideConfig();
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
const embeddings = new OpenAIEmbeddings(
{
modelName: serverConfig.ragEmbeddingModel,
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
// https://js.langchain.com/docs/integrations/vectorstores/pinecone
// https://js.langchain.com/docs/integrations/vectorstores/qdrant
// process files
for (let i = 0; i < reqBody.fileInfos.length; i++) {
const fileInfo = reqBody.fileInfos[i];
const contentType = mime.getType(fileInfo.fileName);
// get file buffer
var fileBuffer: Buffer | undefined;
if (serverConfig.isStoreFileToLocal) {
fileBuffer = await LocalFileStorage.get(fileInfo.fileName);
} else {
var file = await S3FileStorage.get(fileInfo.fileName);
var fileByteArray = await file?.transformToByteArray();
if (fileByteArray) fileBuffer = Buffer.from(fileByteArray);
}
if (!fileBuffer || !contentType) {
console.error(`get ${fileInfo.fileName} buffer fail`);
continue;
}
// load file to docs
const fileBlob = bufferToBlob(fileBuffer, contentType);
const loader = getLoader(fileInfo.fileName, fileBlob, apiKey, baseUrl);
const docs = await loader.load();
// modify doc meta
docs.forEach((doc) => {
doc.metadata = {
...doc.metadata,
sessionId: reqBody.sessionId,
sourceFileName: fileInfo.originalFilename,
fileName: fileInfo.fileName,
};
});
// split
const chunkSize = serverConfig.ragChunkSize
? parseInt(serverConfig.ragChunkSize, 10)
: 2000;
const chunkOverlap = serverConfig.ragChunkOverlap
? parseInt(serverConfig.ragChunkOverlap, 10)
: 200;
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
});
const splits = await textSplitter.splitDocuments(docs);
const vectorStore = await QdrantVectorStore.fromDocuments(
splits,
embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: reqBody.sessionId,
},
);
// await PineconeStore.fromDocuments(splits, embeddings, {
// pineconeIndex,
// maxConcurrency: 5,
// });
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
// pineconeIndex,
// });
}
return NextResponse.json(
{
sessionId: reqBody.sessionId,
},
{
status: 200,
},
);
} catch (e) {
console.error(e);
return new Response(JSON.stringify({ error: (e as any).message }), {
status: 500,
headers: { "Content-Type": "application/json" },
});
}
}
function bufferToBlob(buffer: Buffer, mimeType?: string): Blob {
const arrayBuffer: ArrayBuffer = buffer.buffer.slice(
buffer.byteOffset,
buffer.byteOffset + buffer.byteLength,
);
return new Blob([arrayBuffer], { type: mimeType || "" });
}
function getOpenAIApiKey(token: string) {
const serverConfig = getServerSideConfig();
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
let apiKey = serverConfig.apiKey;
if (isApiKey && token) {
apiKey = token;
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
baseUrl = reqBaseUrl;
if (!baseUrl.endsWith("/v1"))
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
console.log("[baseUrl]", baseUrl);
return baseUrl;
}
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@@ -44,6 +44,7 @@ export interface RequestMessage {
}
export interface RequestBody {
chatSessionId: string;
messages: RequestMessage[];
isAzure: boolean;
azureApiVersion?: string;

View File

@@ -44,6 +44,13 @@ async function handle(req: NextRequest) {
},
{ basePath: baseUrl },
);
const ragEmbeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
var dalleCallback = async (data: string) => {
var response = new ResponseBody();
@@ -62,6 +69,8 @@ async function handle(req: NextRequest) {
baseUrl,
model,
embeddings,
reqBody.chatSessionId,
ragEmbeddings,
dalleCallback,
);
var nodejsTools = await nodejsTool.getCustomTools();