This commit is contained in:
Hk-Gosuto
2024-04-07 18:00:21 +08:00
parent 7382ce48bb
commit b00e9f0c79
17 changed files with 307 additions and 122 deletions

View File

@@ -7,6 +7,8 @@ import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
export class RAGSearch extends Tool {
static lc_name() {
@@ -34,21 +36,32 @@ export class RAGSearch extends Tool {
/** @ignore */
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
pineconeIndex,
});
const serverConfig = getServerSideConfig();
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
// const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
// pineconeIndex,
// });
const vectorStore = await QdrantVectorStore.fromExistingCollection(
this.embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: this.sessionId,
},
);
let context;
const returnCunt = process.env.RAG_RETURN_COUNT
? parseInt(process.env.RAG_RETURN_COUNT, 10)
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
const results = await vectorStore.similaritySearch(inputs, returnCunt, {
sessionId: this.sessionId,
});
console.log("[rag-search]", { inputs, returnCunt });
// const results = await vectorStore.similaritySearch(inputs, returnCunt, {
// sessionId: this.sessionId,
// });
const results = await vectorStore.similaritySearch(inputs, returnCunt);
context = formatDocumentsAsString(results);
console.log("[rag-search]", context);
console.log("[rag-search]", { context });
return context;
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;

View File

@@ -4,6 +4,7 @@ import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAIEmbeddings } from "@langchain/openai";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
import { getServerSideConfig } from "@/app/config/server";
interface RequestBody {
@@ -27,26 +28,40 @@ async function handle(req: NextRequest) {
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const serverConfig = getServerSideConfig();
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const embeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
modelName: serverConfig.ragEmbeddingModel ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
pineconeIndex,
});
const results = await vectorStore.similaritySearch(reqBody.query, 1, {
sessionId: reqBody.sessionId,
});
console.log(results);
return NextResponse.json(results, {
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
// pineconeIndex,
// });
// const results = await vectorStore.similaritySearch(reqBody.query, 4, {
// sessionId: reqBody.sessionId,
// });
const vectorStore = await QdrantVectorStore.fromExistingCollection(
embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: reqBody.sessionId,
},
);
const returnCunt = serverConfig.ragReturnCount
? parseInt(serverConfig.ragReturnCount, 10)
: 4;
const response = await vectorStore.similaritySearch(
reqBody.query,
returnCunt,
);
return NextResponse.json(response, {
status: 200,
});
} catch (e) {

View File

@@ -20,6 +20,7 @@ import { FileInfo } from "@/app/client/platforms/utils";
import mime from "mime";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
interface RequestBody {
sessionId: string;
@@ -80,16 +81,17 @@ async function handle(req: NextRequest) {
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const serverConfig = getServerSideConfig();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
// const pinecone = new Pinecone();
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
const embeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
modelName: serverConfig.ragEmbeddingModel,
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
// https://js.langchain.com/docs/integrations/vectorstores/pinecone
// https://js.langchain.com/docs/integrations/vectorstores/qdrant
// process files
for (let i = 0; i < reqBody.fileInfos.length; i++) {
const fileInfo = reqBody.fileInfos[i];
@@ -121,22 +123,33 @@ async function handle(req: NextRequest) {
};
});
// split
const chunkSize = process.env.RAG_CHUNK_SIZE
? parseInt(process.env.RAG_CHUNK_SIZE, 10)
const chunkSize = serverConfig.ragChunkSize
? parseInt(serverConfig.ragChunkSize, 10)
: 2000;
const chunkOverlap = process.env.RAG_CHUNK_OVERLAP
? parseInt(process.env.RAG_CHUNK_OVERLAP, 10)
const chunkOverlap = serverConfig.ragChunkOverlap
? parseInt(serverConfig.ragChunkOverlap, 10)
: 200;
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
});
const splits = await textSplitter.splitDocuments(docs);
// remove history
await PineconeStore.fromDocuments(splits, embeddings, {
pineconeIndex,
maxConcurrency: 5,
});
const vectorStore = await QdrantVectorStore.fromDocuments(
splits,
embeddings,
{
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
collectionName: reqBody.sessionId,
},
);
// await PineconeStore.fromDocuments(splits, embeddings, {
// pineconeIndex,
// maxConcurrency: 5,
// });
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
// pineconeIndex,
// });
}
return NextResponse.json(
{