package service import ( "encoding/json" "errors" "fmt" "github.com/pkoukk/tiktoken-go" "image" "log" "math" "one-api/common" "one-api/dto" "strings" "unicode/utf8" ) // tokenEncoderMap won't grow after initialization var tokenEncoderMap = map[string]*tiktoken.Tiktoken{} var defaultTokenEncoder *tiktoken.Tiktoken func InitTokenEncoders() { common.SysLog("initializing token encoders") gpt35TokenEncoder, err := tiktoken.EncodingForModel("gpt-3.5-turbo") if err != nil { common.FatalLog(fmt.Sprintf("failed to get gpt-3.5-turbo token encoder: %s", err.Error())) } defaultTokenEncoder = gpt35TokenEncoder gpt4TokenEncoder, err := tiktoken.EncodingForModel("gpt-4") if err != nil { common.FatalLog(fmt.Sprintf("failed to get gpt-4 token encoder: %s", err.Error())) } for model, _ := range common.DefaultModelRatio { if strings.HasPrefix(model, "gpt-3.5") { tokenEncoderMap[model] = gpt35TokenEncoder } else if strings.HasPrefix(model, "gpt-4") { tokenEncoderMap[model] = gpt4TokenEncoder } else { tokenEncoderMap[model] = nil } } common.SysLog("token encoders initialized") } func getTokenEncoder(model string) *tiktoken.Tiktoken { tokenEncoder, ok := tokenEncoderMap[model] if ok && tokenEncoder != nil { return tokenEncoder } if ok { tokenEncoder, err := tiktoken.EncodingForModel(model) if err != nil { common.SysError(fmt.Sprintf("failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo", model, err.Error())) tokenEncoder = defaultTokenEncoder } tokenEncoderMap[model] = tokenEncoder return tokenEncoder } return defaultTokenEncoder } func getTokenNum(tokenEncoder *tiktoken.Tiktoken, text string) int { return len(tokenEncoder.Encode(text, nil, nil)) } func getImageToken(imageUrl *dto.MessageImageUrl) (int, error) { if imageUrl.Detail == "low" { return 85, nil } var config image.Config var err error var format string if strings.HasPrefix(imageUrl.Url, "http") { common.SysLog(fmt.Sprintf("downloading image: %s", imageUrl.Url)) config, format, err = common.DecodeUrlImageData(imageUrl.Url) } else { common.SysLog(fmt.Sprintf("decoding image")) config, format, _, err = common.DecodeBase64ImageData(imageUrl.Url) } if err != nil { return 0, err } if config.Width == 0 || config.Height == 0 { return 0, errors.New(fmt.Sprintf("fail to decode image config: %s", imageUrl.Url)) } // TODO: 适配官方auto计费 if config.Width < 512 && config.Height < 512 { if imageUrl.Detail == "auto" || imageUrl.Detail == "" { // 如果图片尺寸小于512,强制使用low imageUrl.Detail = "low" return 85, nil } } shortSide := config.Width otherSide := config.Height log.Printf("format: %s, width: %d, height: %d", format, config.Width, config.Height) // 缩放倍数 scale := 1.0 if config.Height < shortSide { shortSide = config.Height otherSide = config.Width } // 将最小变的尺寸缩小到768以下,如果大于768,则缩放到768 if shortSide > 768 { scale = float64(shortSide) / 768 shortSide = 768 } // 将另一边按照相同的比例缩小,向上取整 otherSide = int(math.Ceil(float64(otherSide) / scale)) log.Printf("shortSide: %d, otherSide: %d, scale: %f", shortSide, otherSide, scale) // 计算图片的token数量(边的长度除以512,向上取整) tiles := (shortSide + 511) / 512 * ((otherSide + 511) / 512) log.Printf("tiles: %d", tiles) return tiles*170 + 85, nil } func CountTokenMessages(messages []dto.Message, model string, checkSensitive bool) (int, error, bool) { //recover when panic tokenEncoder := getTokenEncoder(model) // Reference: // https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb // https://github.com/pkoukk/tiktoken-go/issues/6 // // Every message follows <|start|>{role/name}\n{content}<|end|>\n var tokensPerMessage int var tokensPerName int if model == "gpt-3.5-turbo-0301" { tokensPerMessage = 4 tokensPerName = -1 // If there's a name, the role is omitted } else { tokensPerMessage = 3 tokensPerName = 1 } tokenNum := 0 for _, message := range messages { tokenNum += tokensPerMessage tokenNum += getTokenNum(tokenEncoder, message.Role) if len(message.Content) > 0 { var arrayContent []dto.MediaMessage if err := json.Unmarshal(message.Content, &arrayContent); err != nil { var stringContent string if err := json.Unmarshal(message.Content, &stringContent); err != nil { return 0, err, false } else { if checkSensitive { contains, words := SensitiveWordContains(stringContent) if contains { err := fmt.Errorf("message contains sensitive words: [%s]", strings.Join(words, ", ")) return 0, err, true } } tokenNum += getTokenNum(tokenEncoder, stringContent) if message.Name != nil { tokenNum += tokensPerName tokenNum += getTokenNum(tokenEncoder, *message.Name) } } } else { for _, m := range arrayContent { if m.Type == "image_url" { var imageTokenNum int if model == "glm-4v" { imageTokenNum = 1047 } else { if str, ok := m.ImageUrl.(string); ok { imageTokenNum, err = getImageToken(&dto.MessageImageUrl{Url: str, Detail: "auto"}) } else { imageUrlMap := m.ImageUrl.(map[string]interface{}) detail, ok := imageUrlMap["detail"] if ok { imageUrlMap["detail"] = detail.(string) } else { imageUrlMap["detail"] = "auto" } imageUrl := dto.MessageImageUrl{ Url: imageUrlMap["url"].(string), Detail: imageUrlMap["detail"].(string), } imageTokenNum, err = getImageToken(&imageUrl) } if err != nil { return 0, err, false } } tokenNum += imageTokenNum log.Printf("image token num: %d", imageTokenNum) } else { tokenNum += getTokenNum(tokenEncoder, m.Text) } } } } } tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|> return tokenNum, nil, false } func CountTokenInput(input any, model string, check bool) (int, error, bool) { switch v := input.(type) { case string: return CountTokenText(v, model, check) case []string: text := "" for _, s := range v { text += s } return CountTokenText(text, model, check) } return CountTokenInput(fmt.Sprintf("%v", input), model, check) } func CountAudioToken(text string, model string, check bool) (int, error, bool) { if strings.HasPrefix(model, "tts") { contains, words := SensitiveWordContains(text) if contains { return utf8.RuneCountInString(text), fmt.Errorf("input contains sensitive words: [%s]", strings.Join(words, ",")), true } return utf8.RuneCountInString(text), nil, false } else { return CountTokenText(text, model, check) } } // CountTokenText 统计文本的token数量,仅当文本包含敏感词,返回错误,同时返回token数量 func CountTokenText(text string, model string, check bool) (int, error, bool) { var err error var trigger bool if check { contains, words := SensitiveWordContains(text) if contains { err = fmt.Errorf("input contains sensitive words: [%s]", strings.Join(words, ",")) trigger = true } } tokenEncoder := getTokenEncoder(model) return getTokenNum(tokenEncoder, text), err, trigger }