mirror of
https://github.com/linux-do/new-api.git
synced 2025-09-18 00:16:37 +08:00
235 lines
8.2 KiB
Go
235 lines
8.2 KiB
Go
package relay
|
||
|
||
import (
|
||
"bytes"
|
||
"context"
|
||
"encoding/json"
|
||
"errors"
|
||
"fmt"
|
||
"github.com/gin-gonic/gin"
|
||
"io"
|
||
"net/http"
|
||
"one-api/common"
|
||
"one-api/dto"
|
||
"one-api/model"
|
||
relaycommon "one-api/relay/common"
|
||
relayconstant "one-api/relay/constant"
|
||
"one-api/service"
|
||
"strings"
|
||
"time"
|
||
)
|
||
|
||
func RelayImageHelper(c *gin.Context, relayMode int) *dto.OpenAIErrorWithStatusCode {
|
||
tokenId := c.GetInt("token_id")
|
||
channelType := c.GetInt("channel")
|
||
channelId := c.GetInt("channel_id")
|
||
userId := c.GetInt("id")
|
||
consumeQuota := c.GetBool("consume_quota")
|
||
group := c.GetString("group")
|
||
startTime := time.Now()
|
||
|
||
var imageRequest dto.ImageRequest
|
||
if consumeQuota {
|
||
err := common.UnmarshalBodyReusable(c, &imageRequest)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
|
||
}
|
||
}
|
||
|
||
if imageRequest.Model == "" {
|
||
imageRequest.Model = "dall-e-2"
|
||
}
|
||
if imageRequest.Size == "" {
|
||
imageRequest.Size = "1024x1024"
|
||
}
|
||
if imageRequest.N == 0 {
|
||
imageRequest.N = 1
|
||
}
|
||
// Prompt validation
|
||
if imageRequest.Prompt == "" {
|
||
return service.OpenAIErrorWrapper(errors.New("prompt is required"), "required_field_missing", http.StatusBadRequest)
|
||
}
|
||
|
||
if strings.Contains(imageRequest.Size, "×") {
|
||
return service.OpenAIErrorWrapper(errors.New("size an unexpected error occurred in the parameter, please use 'x' instead of the multiplication sign '×'"), "invalid_field_value", http.StatusBadRequest)
|
||
}
|
||
// Not "256x256", "512x512", or "1024x1024"
|
||
if imageRequest.Model == "dall-e-2" || imageRequest.Model == "dall-e" {
|
||
if imageRequest.Size != "" && imageRequest.Size != "256x256" && imageRequest.Size != "512x512" && imageRequest.Size != "1024x1024" {
|
||
return service.OpenAIErrorWrapper(errors.New("size must be one of 256x256, 512x512, or 1024x1024, dall-e-3 1024x1792 or 1792x1024"), "invalid_field_value", http.StatusBadRequest)
|
||
}
|
||
} else if imageRequest.Model == "dall-e-3" {
|
||
if imageRequest.Size != "" && imageRequest.Size != "1024x1024" && imageRequest.Size != "1024x1792" && imageRequest.Size != "1792x1024" {
|
||
return service.OpenAIErrorWrapper(errors.New("size must be one of 256x256, 512x512, or 1024x1024, dall-e-3 1024x1792 or 1792x1024"), "invalid_field_value", http.StatusBadRequest)
|
||
}
|
||
if imageRequest.N != 1 {
|
||
return service.OpenAIErrorWrapper(errors.New("n must be 1"), "invalid_field_value", http.StatusBadRequest)
|
||
}
|
||
}
|
||
|
||
// N should between 1 and 10
|
||
if imageRequest.N != 0 && (imageRequest.N < 1 || imageRequest.N > 10) {
|
||
return service.OpenAIErrorWrapper(errors.New("n must be between 1 and 10"), "invalid_field_value", http.StatusBadRequest)
|
||
}
|
||
|
||
// map model name
|
||
modelMapping := c.GetString("model_mapping")
|
||
isModelMapped := false
|
||
if modelMapping != "" {
|
||
modelMap := make(map[string]string)
|
||
err := json.Unmarshal([]byte(modelMapping), &modelMap)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
|
||
}
|
||
if modelMap[imageRequest.Model] != "" {
|
||
imageRequest.Model = modelMap[imageRequest.Model]
|
||
isModelMapped = true
|
||
}
|
||
}
|
||
baseURL := common.ChannelBaseURLs[channelType]
|
||
requestURL := c.Request.URL.String()
|
||
if c.GetString("base_url") != "" {
|
||
baseURL = c.GetString("base_url")
|
||
}
|
||
fullRequestURL := relaycommon.GetFullRequestURL(baseURL, requestURL, channelType)
|
||
if channelType == common.ChannelTypeAzure && relayMode == relayconstant.RelayModeImagesGenerations {
|
||
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
|
||
apiVersion := relaycommon.GetAPIVersion(c)
|
||
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2023-06-01-preview
|
||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", baseURL, imageRequest.Model, apiVersion)
|
||
}
|
||
var requestBody io.Reader
|
||
if isModelMapped || channelType == common.ChannelTypeAzure { // make Azure channel request body
|
||
jsonStr, err := json.Marshal(imageRequest)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||
}
|
||
requestBody = bytes.NewBuffer(jsonStr)
|
||
} else {
|
||
requestBody = c.Request.Body
|
||
}
|
||
|
||
modelRatio := common.GetModelRatio(imageRequest.Model)
|
||
groupRatio := common.GetGroupRatio(group)
|
||
ratio := modelRatio * groupRatio
|
||
userQuota, err := model.CacheGetUserQuota(userId)
|
||
|
||
sizeRatio := 1.0
|
||
// Size
|
||
if imageRequest.Size == "256x256" {
|
||
sizeRatio = 1
|
||
} else if imageRequest.Size == "512x512" {
|
||
sizeRatio = 1.125
|
||
} else if imageRequest.Size == "1024x1024" {
|
||
sizeRatio = 1.25
|
||
} else if imageRequest.Size == "1024x1792" || imageRequest.Size == "1792x1024" {
|
||
sizeRatio = 2.5
|
||
}
|
||
|
||
qualityRatio := 1.0
|
||
if imageRequest.Model == "dall-e-3" && imageRequest.Quality == "hd" {
|
||
qualityRatio = 2.0
|
||
if imageRequest.Size == "1024×1792" || imageRequest.Size == "1792×1024" {
|
||
qualityRatio = 1.5
|
||
}
|
||
}
|
||
|
||
quota := int(ratio*sizeRatio*qualityRatio*1000) * imageRequest.N
|
||
|
||
if consumeQuota && userQuota-quota < 0 {
|
||
return service.OpenAIErrorWrapper(errors.New("user quota is not enough"), "insufficient_user_quota", http.StatusForbidden)
|
||
}
|
||
|
||
req, err := http.NewRequest(c.Request.Method, fullRequestURL, requestBody)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
|
||
}
|
||
|
||
token := c.Request.Header.Get("Authorization")
|
||
if channelType == common.ChannelTypeAzure { // Azure authentication
|
||
token = strings.TrimPrefix(token, "Bearer ")
|
||
req.Header.Set("api-key", token)
|
||
} else {
|
||
req.Header.Set("Authorization", token)
|
||
}
|
||
req.Header.Set("Content-Type", c.Request.Header.Get("Content-Type"))
|
||
req.Header.Set("Accept", c.Request.Header.Get("Accept"))
|
||
|
||
resp, err := service.GetHttpClient().Do(req)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "do_request_failed", http.StatusInternalServerError)
|
||
}
|
||
|
||
err = req.Body.Close()
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||
}
|
||
err = c.Request.Body.Close()
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||
}
|
||
|
||
if resp.StatusCode != http.StatusOK {
|
||
return relaycommon.RelayErrorHandler(resp)
|
||
}
|
||
|
||
var textResponse dto.ImageResponse
|
||
defer func(ctx context.Context) {
|
||
useTimeSeconds := time.Now().Unix() - startTime.Unix()
|
||
if consumeQuota {
|
||
if resp.StatusCode != http.StatusOK {
|
||
return
|
||
}
|
||
err := model.PostConsumeTokenQuota(tokenId, userQuota, quota, 0, true)
|
||
if err != nil {
|
||
common.SysError("error consuming token remain quota: " + err.Error())
|
||
}
|
||
err = model.CacheUpdateUserQuota(userId)
|
||
if err != nil {
|
||
common.SysError("error update user quota cache: " + err.Error())
|
||
}
|
||
if quota != 0 {
|
||
tokenName := c.GetString("token_name")
|
||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f", modelRatio, groupRatio)
|
||
model.RecordConsumeLog(ctx, userId, channelId, 0, 0, imageRequest.Model, tokenName, quota, logContent, tokenId, userQuota, int(useTimeSeconds), false)
|
||
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
|
||
channelId := c.GetInt("channel_id")
|
||
model.UpdateChannelUsedQuota(channelId, quota)
|
||
}
|
||
}
|
||
}(c.Request.Context())
|
||
|
||
if consumeQuota {
|
||
responseBody, err := io.ReadAll(resp.Body)
|
||
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError)
|
||
}
|
||
err = resp.Body.Close()
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||
}
|
||
err = json.Unmarshal(responseBody, &textResponse)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
|
||
}
|
||
|
||
resp.Body = io.NopCloser(bytes.NewBuffer(responseBody))
|
||
}
|
||
|
||
for k, v := range resp.Header {
|
||
c.Writer.Header().Set(k, v[0])
|
||
}
|
||
c.Writer.WriteHeader(resp.StatusCode)
|
||
|
||
_, err = io.Copy(c.Writer, resp.Body)
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError)
|
||
}
|
||
err = resp.Body.Close()
|
||
if err != nil {
|
||
return service.OpenAIErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||
}
|
||
return nil
|
||
}
|