package vertexai import ( "encoding/json" "io" "net/http" "strings" "github.com/songquanpeng/one-api/relay/adaptor/gemini" "github.com/songquanpeng/one-api/relay/adaptor/openai" model2 "github.com/songquanpeng/one-api/relay/adaptor/vertexai/model" "github.com/gin-gonic/gin" "github.com/pkg/errors" "github.com/songquanpeng/one-api/relay/meta" "github.com/songquanpeng/one-api/relay/model" ) var ModelList = []string{ "textembedding-gecko-multilingual@001", "text-multilingual-embedding-002", } type Adaptor struct { model string task EmbeddingTaskType } var _ model2.InnerAIAdapter = (*Adaptor)(nil) func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) { if request == nil { return nil, errors.New("request is nil") } inputs := request.ParseInput() if len(inputs) == 0 { return nil, errors.New("request is nil") } parts := strings.Split(request.Model, "|") if len(parts) >= 2 { a.task = EmbeddingTaskType(parts[1]) } else { a.task = EmbeddingTaskTypeSemanticSimilarity } a.model = parts[0] instances := make([]EmbeddingInstance, len(inputs)) for i, input := range inputs { instances[i] = EmbeddingInstance{ Content: input, TaskType: a.task, } } embeddingRequest := EmbeddingRequest{ Instances: instances, Parameters: EmbeddingParams{ OutputDimensionality: request.Dimensions, }, } return embeddingRequest, nil } func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) { err, usage = EmbeddingHandler(c, a.model, resp) return } func EmbeddingHandler(c *gin.Context, modelName string, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) { var vertexEmbeddingResponse EmbeddingResponse responseBody, err := io.ReadAll(resp.Body) if resp.StatusCode != http.StatusOK { return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil } if err != nil { return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil } err = resp.Body.Close() if err != nil { return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil } err = json.Unmarshal(responseBody, &vertexEmbeddingResponse) if err != nil { return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil } openaiResp := &openai.EmbeddingResponse{ Model: modelName, Data: make([]openai.EmbeddingResponseItem, 0, len(vertexEmbeddingResponse.Predictions)), Usage: model.Usage{ TotalTokens: 0, }, } for i, pred := range vertexEmbeddingResponse.Predictions { openaiResp.Data = append(openaiResp.Data, openai.EmbeddingResponseItem{ Index: i, Embedding: pred.Embeddings.Values, }) } for _, pred := range vertexEmbeddingResponse.Predictions { openaiResp.Usage.TotalTokens += pred.Embeddings.Statistics.TokenCount } return gemini.EmbeddingResponseHandler(c, resp.StatusCode, openaiResp) }