package replicate import ( "fmt" "io" "net/http" "slices" "strings" "time" "github.com/gin-gonic/gin" "github.com/pkg/errors" "github.com/songquanpeng/one-api/common/logger" "github.com/songquanpeng/one-api/relay/adaptor" "github.com/songquanpeng/one-api/relay/adaptor/openai" "github.com/songquanpeng/one-api/relay/meta" "github.com/songquanpeng/one-api/relay/model" "github.com/songquanpeng/one-api/relay/relaymode" ) type Adaptor struct { meta *meta.Meta } // ConvertImageRequest implements adaptor.Adaptor. func (*Adaptor) ConvertImageRequest(request *model.ImageRequest) (any, error) { return DrawImageRequest{ Input: ImageInput{ Steps: 25, Prompt: request.Prompt, Guidance: 3, Seed: int(time.Now().UnixNano()), SafetyTolerance: 5, NImages: 1, // replicate will always return 1 image Width: 1440, Height: 1440, AspectRatio: "1:1", }, }, nil } func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) { if !request.Stream { // TODO: support non-stream mode return nil, errors.Errorf("replicate models only support stream mode now, please set stream=true") } // Build the prompt from OpenAI messages var promptBuilder strings.Builder for _, message := range request.Messages { switch msgCnt := message.Content.(type) { case string: promptBuilder.WriteString(message.Role) promptBuilder.WriteString(": ") promptBuilder.WriteString(msgCnt) promptBuilder.WriteString("\n") default: } } replicateRequest := ReplicateChatRequest{ Input: ChatInput{ Prompt: promptBuilder.String(), MaxTokens: request.MaxTokens, Temperature: 1.0, TopP: 1.0, PresencePenalty: 0.0, FrequencyPenalty: 0.0, }, } // Map optional fields if request.Temperature != nil { replicateRequest.Input.Temperature = *request.Temperature } if request.TopP != nil { replicateRequest.Input.TopP = *request.TopP } if request.PresencePenalty != nil { replicateRequest.Input.PresencePenalty = *request.PresencePenalty } if request.FrequencyPenalty != nil { replicateRequest.Input.FrequencyPenalty = *request.FrequencyPenalty } if request.MaxTokens > 0 { replicateRequest.Input.MaxTokens = request.MaxTokens } else if request.MaxTokens == 0 { replicateRequest.Input.MaxTokens = 500 } return replicateRequest, nil } func (a *Adaptor) Init(meta *meta.Meta) { a.meta = meta } func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) { if !slices.Contains(ModelList, meta.OriginModelName) { return "", errors.Errorf("model %s not supported", meta.OriginModelName) } return fmt.Sprintf("https://api.replicate.com/v1/models/%s/predictions", meta.OriginModelName), nil } func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error { adaptor.SetupCommonRequestHeader(c, req, meta) req.Header.Set("Authorization", "Bearer "+meta.APIKey) return nil } func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) { logger.Info(c, "send request to replicate") return adaptor.DoRequestHelper(a, c, meta, requestBody) } func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) { switch meta.Mode { case relaymode.ImagesGenerations: err, usage = ImageHandler(c, resp) case relaymode.ChatCompletions: err, usage = ChatHandler(c, resp) default: err = openai.ErrorWrapper(errors.New("not implemented"), "not_implemented", http.StatusInternalServerError) } return } func (a *Adaptor) GetModelList() []string { return ModelList } func (a *Adaptor) GetChannelName() string { return "replicate" }