Merge branch 'main' of https://github.com/ChatGPTNextWeb/NextChat into feature-dsmodels-20250228

This commit is contained in:
wangjianhua
2025-09-19 15:14:25 +08:00
42 changed files with 1728 additions and 94 deletions

View File

@@ -0,0 +1,287 @@
"use client";
import {
ApiPath,
AI302_BASE_URL,
DEFAULT_MODELS,
AI302,
} from "@/app/constant";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { preProcessImageContent, streamWithThink } from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageTextContentWithoutThinking,
isVisionModel,
getTimeoutMSByModel,
} from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export interface Ai302ListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
export class Ai302Api implements LLMApi {
private disableListModels = false;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.ai302Url;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = ApiPath["302.AI"];
baseUrl = isApp ? AI302_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (
!baseUrl.startsWith("http") &&
!baseUrl.startsWith(ApiPath["302.AI"])
) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const visionModel = isVisionModel(options.config.model);
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
if (v.role === "assistant") {
const content = getMessageTextContentWithoutThinking(v);
messages.push({ role: v.role, content });
} else {
const content = visionModel
? await preProcessImageContent(v.content)
: getMessageTextContent(v);
messages.push({ role: v.role, content });
}
}
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
const requestPayload: RequestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(AI302.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// console.log(chatPayload);
// Use extended timeout for thinking models as they typically require more processing time
const requestTimeoutId = setTimeout(
() => controller.abort(),
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return streamWithThink(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string | null;
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
const reasoning = choices[0]?.delta?.reasoning_content;
const content = choices[0]?.delta?.content;
// Skip if both content and reasoning_content are empty or null
if (
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
return {
isThinking: false,
content: "",
};
}
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: content,
};
}
return {
isThinking: false,
content: "",
};
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
if (this.disableListModels) {
return DEFAULT_MODELS.slice();
}
const res = await fetch(this.path(AI302.ListModelPath), {
method: "GET",
headers: {
...getHeaders(),
},
});
const resJson = (await res.json()) as Ai302ListModelResponse;
const chatModels = resJson.data;
console.log("[Models]", chatModels);
if (!chatModels) {
return [];
}
let seq = 1000; //同 Constant.ts 中的排序保持一致
return chatModels.map((m) => ({
name: m.id,
available: true,
sorted: seq++,
provider: {
id: "ai302",
providerName: "302.AI",
providerType: "ai302",
sorted: 15,
},
}));
}
}

View File

@@ -224,7 +224,7 @@ export class ClaudeApi implements LLMApi {
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
type: "content_block_delta" | "content_block_stop" | "message_delta" | "message_stop";
content_block?: {
type: "tool_use";
id: string;
@@ -234,11 +234,20 @@ export class ClaudeApi implements LLMApi {
type: "text_delta" | "input_json_delta";
text?: string;
partial_json?: string;
stop_reason?: string;
};
index: number;
};
chunkJson = JSON.parse(text);
// Handle refusal stop reason in message_delta
if (chunkJson?.delta?.stop_reason === "refusal") {
// Return a message to display to the user
const refusalMessage = "\n\n[Assistant refused to respond. Please modify your request and try again.]";
options.onError?.(new Error("Content policy violation: " + refusalMessage));
return refusalMessage;
}
if (chunkJson?.content_block?.type == "tool_use") {
index += 1;
const id = chunkJson?.content_block.id;

View File

@@ -56,7 +56,7 @@ export interface OpenAIListModelResponse {
export interface RequestPayload {
messages: {
role: "system" | "user" | "assistant";
role: "developer" | "system" | "user" | "assistant";
content: string | MultimodalContent[];
}[];
stream?: boolean;
@@ -198,7 +198,9 @@ export class ChatGPTApi implements LLMApi {
const isDalle3 = _isDalle3(options.config.model);
const isO1OrO3 =
options.config.model.startsWith("o1") ||
options.config.model.startsWith("o3");
options.config.model.startsWith("o3") ||
options.config.model.startsWith("o4-mini");
const isGpt5 = options.config.model.startsWith("gpt-5");
if (isDalle3) {
const prompt = getMessageTextContent(
options.messages.slice(-1)?.pop() as any,
@@ -229,7 +231,7 @@ export class ChatGPTApi implements LLMApi {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: !isO1OrO3 ? modelConfig.temperature : 1,
temperature: (!isO1OrO3 && !isGpt5) ? modelConfig.temperature : 1,
presence_penalty: !isO1OrO3 ? modelConfig.presence_penalty : 0,
frequency_penalty: !isO1OrO3 ? modelConfig.frequency_penalty : 0,
top_p: !isO1OrO3 ? modelConfig.top_p : 1,
@@ -237,13 +239,28 @@ export class ChatGPTApi implements LLMApi {
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
// O1 使用 max_completion_tokens 控制token数 (https://platform.openai.com/docs/guides/reasoning#controlling-costs)
if (isO1OrO3) {
if (isGpt5) {
// Remove max_tokens if present
delete requestPayload.max_tokens;
// Add max_completion_tokens (or max_completion_tokens if that's what you meant)
requestPayload["max_completion_tokens"] = modelConfig.max_tokens;
} else if (isO1OrO3) {
// by default the o1/o3 models will not attempt to produce output that includes markdown formatting
// manually add "Formatting re-enabled" developer message to encourage markdown inclusion in model responses
// (https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/reasoning?tabs=python-secure#markdown-output)
requestPayload["messages"].unshift({
role: "developer",
content: "Formatting re-enabled",
});
// o1/o3 uses max_completion_tokens to control the number of tokens (https://platform.openai.com/docs/guides/reasoning#controlling-costs)
requestPayload["max_completion_tokens"] = modelConfig.max_tokens;
}
// add max_tokens to vision model
if (visionModel) {
if (visionModel && !isO1OrO3 && ! isGpt5) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
}
}