mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-11-13 12:43:42 +08:00
feat: optimize rag
This commit is contained in:
@@ -20,7 +20,10 @@ import { FileInfo } from "@/app/client/platforms/utils";
|
||||
import mime from "mime";
|
||||
import LocalFileStorage from "@/app/utils/local_file_storage";
|
||||
import S3FileStorage from "@/app/utils/s3_file_storage";
|
||||
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama";
|
||||
import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
|
||||
import { createClient } from "@supabase/supabase-js";
|
||||
import { Embeddings } from "langchain/dist/embeddings/base";
|
||||
|
||||
interface RequestBody {
|
||||
sessionId: string;
|
||||
@@ -67,6 +70,11 @@ async function handle(req: NextRequest) {
|
||||
if (req.method === "OPTIONS") {
|
||||
return NextResponse.json({ body: "OK" }, { status: 200 });
|
||||
}
|
||||
const privateKey = process.env.SUPABASE_PRIVATE_KEY;
|
||||
if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);
|
||||
const url = process.env.SUPABASE_URL;
|
||||
if (!url) throw new Error(`Expected env var SUPABASE_URL`);
|
||||
|
||||
try {
|
||||
const authResult = auth(req, ModelProvider.GPT);
|
||||
if (authResult.error) {
|
||||
@@ -81,18 +89,25 @@ async function handle(req: NextRequest) {
|
||||
const apiKey = getOpenAIApiKey(token);
|
||||
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
|
||||
const serverConfig = getServerSideConfig();
|
||||
// const pinecone = new Pinecone();
|
||||
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
|
||||
const embeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName: serverConfig.ragEmbeddingModel,
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
let embeddings: Embeddings;
|
||||
if (process.env.OLLAMA_BASE_URL) {
|
||||
embeddings = new OllamaEmbeddings({
|
||||
model: serverConfig.ragEmbeddingModel,
|
||||
baseUrl: process.env.OLLAMA_BASE_URL,
|
||||
});
|
||||
} else {
|
||||
embeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName: serverConfig.ragEmbeddingModel,
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
}
|
||||
// https://js.langchain.com/docs/integrations/vectorstores/pinecone
|
||||
// https://js.langchain.com/docs/integrations/vectorstores/qdrant
|
||||
// process files
|
||||
let partial = "";
|
||||
for (let i = 0; i < reqBody.fileInfos.length; i++) {
|
||||
const fileInfo = reqBody.fileInfos[i];
|
||||
const contentType = mime.getType(fileInfo.fileName);
|
||||
@@ -134,26 +149,25 @@ async function handle(req: NextRequest) {
|
||||
chunkOverlap: chunkOverlap,
|
||||
});
|
||||
const splits = await textSplitter.splitDocuments(docs);
|
||||
const vectorStore = await QdrantVectorStore.fromDocuments(
|
||||
const client = createClient(url, privateKey);
|
||||
const vectorStore = await SupabaseVectorStore.fromDocuments(
|
||||
splits,
|
||||
embeddings,
|
||||
{
|
||||
url: process.env.QDRANT_URL,
|
||||
apiKey: process.env.QDRANT_API_KEY,
|
||||
collectionName: reqBody.sessionId,
|
||||
client,
|
||||
tableName: "documents",
|
||||
queryName: "match_documents",
|
||||
},
|
||||
);
|
||||
// await PineconeStore.fromDocuments(splits, embeddings, {
|
||||
// pineconeIndex,
|
||||
// maxConcurrency: 5,
|
||||
// });
|
||||
// const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
|
||||
// pineconeIndex,
|
||||
// });
|
||||
partial = splits
|
||||
.slice(0, 2)
|
||||
.map((v) => v.pageContent)
|
||||
.join("\n");
|
||||
}
|
||||
return NextResponse.json(
|
||||
{
|
||||
sessionId: reqBody.sessionId,
|
||||
partial: partial,
|
||||
},
|
||||
{
|
||||
status: 200,
|
||||
|
||||
@@ -4,6 +4,8 @@ import { auth } from "@/app/api/auth";
|
||||
import { NodeJSTool } from "@/app/api/langchain-tools/nodejs_tools";
|
||||
import { ModelProvider } from "@/app/constant";
|
||||
import { OpenAI, OpenAIEmbeddings } from "@langchain/openai";
|
||||
import { Embeddings } from "langchain/dist/embeddings/base";
|
||||
import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama";
|
||||
|
||||
async function handle(req: NextRequest) {
|
||||
if (req.method === "OPTIONS") {
|
||||
@@ -44,13 +46,22 @@ async function handle(req: NextRequest) {
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
const ragEmbeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
let ragEmbeddings: Embeddings;
|
||||
if (process.env.OLLAMA_BASE_URL) {
|
||||
ragEmbeddings = new OllamaEmbeddings({
|
||||
model: process.env.RAG_EMBEDDING_MODEL,
|
||||
baseUrl: process.env.OLLAMA_BASE_URL,
|
||||
});
|
||||
} else {
|
||||
ragEmbeddings = new OpenAIEmbeddings(
|
||||
{
|
||||
modelName:
|
||||
process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
|
||||
openAIApiKey: apiKey,
|
||||
},
|
||||
{ basePath: baseUrl },
|
||||
);
|
||||
}
|
||||
|
||||
var dalleCallback = async (data: string) => {
|
||||
var response = new ResponseBody();
|
||||
|
||||
Reference in New Issue
Block a user