mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-11-13 20:53:45 +08:00
feat: optimize rag
This commit is contained in:
78
app/api/langchain-tools/myfiles_browser.ts
Normal file
78
app/api/langchain-tools/myfiles_browser.ts
Normal file
@@ -0,0 +1,78 @@
|
||||
import { Tool } from "@langchain/core/tools";
|
||||
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
|
||||
import { BaseLanguageModel } from "langchain/dist/base_language";
|
||||
import { formatDocumentsAsString } from "langchain/util/document";
|
||||
import { Embeddings } from "langchain/dist/embeddings/base.js";
|
||||
import { getServerSideConfig } from "@/app/config/server";
|
||||
import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
|
||||
import { createClient } from "@supabase/supabase-js";
|
||||
import { z } from "zod";
|
||||
import { StructuredTool } from "@langchain/core/tools";
|
||||
|
||||
export class MyFilesBrowser extends StructuredTool {
|
||||
static lc_name() {
|
||||
return "MyFilesBrowser";
|
||||
}
|
||||
|
||||
get lc_namespace() {
|
||||
return [...super.lc_namespace, "myfilesbrowser"];
|
||||
}
|
||||
|
||||
private sessionId: string;
|
||||
private model: BaseLanguageModel;
|
||||
private embeddings: Embeddings;
|
||||
|
||||
constructor(
|
||||
sessionId: string,
|
||||
model: BaseLanguageModel,
|
||||
embeddings: Embeddings,
|
||||
) {
|
||||
super();
|
||||
this.sessionId = sessionId;
|
||||
this.model = model;
|
||||
this.embeddings = embeddings;
|
||||
}
|
||||
|
||||
schema = z.object({
|
||||
queries: z.array(z.string()).describe("A query list."),
|
||||
});
|
||||
|
||||
/** @ignore */
|
||||
async _call({ queries }: z.infer<typeof this.schema>) {
|
||||
const serverConfig = getServerSideConfig();
|
||||
if (!serverConfig.isEnableRAG)
|
||||
throw new Error("env ENABLE_RAG not configured");
|
||||
|
||||
const privateKey = process.env.SUPABASE_PRIVATE_KEY;
|
||||
if (!privateKey) throw new Error(`Expected env var SUPABASE_PRIVATE_KEY`);
|
||||
|
||||
const url = process.env.SUPABASE_URL;
|
||||
if (!url) throw new Error(`Expected env var SUPABASE_URL`);
|
||||
const client = createClient(url, privateKey);
|
||||
const vectorStore = new SupabaseVectorStore(this.embeddings, {
|
||||
client,
|
||||
tableName: "documents",
|
||||
queryName: "match_documents",
|
||||
});
|
||||
|
||||
let context;
|
||||
const returnCunt = serverConfig.ragReturnCount
|
||||
? parseInt(serverConfig.ragReturnCount, 10)
|
||||
: 4;
|
||||
console.log("[myfiles_browser]", { queries, returnCunt });
|
||||
let documents: any[] = [];
|
||||
for (var i = 0; i < queries.length; i++) {
|
||||
let results = await vectorStore.similaritySearch(queries[i], returnCunt, {
|
||||
sessionId: this.sessionId,
|
||||
});
|
||||
results.forEach((item) => documents.push(item));
|
||||
}
|
||||
context = formatDocumentsAsString(documents);
|
||||
console.log("[myfiles_browser]", { context });
|
||||
return context;
|
||||
}
|
||||
|
||||
name = "myfiles_browser";
|
||||
|
||||
description = `queries to a search over the file(s) uploaded in the current conversation and displays the results.`;
|
||||
}
|
||||
@@ -10,7 +10,7 @@ import { WolframAlphaTool } from "@/app/api/langchain-tools/wolframalpha";
|
||||
import { BilibiliVideoInfoTool } from "./bilibili_vid_info";
|
||||
import { BilibiliVideoSearchTool } from "./bilibili_vid_search";
|
||||
import { BilibiliMusicRecognitionTool } from "./bilibili_music_recognition";
|
||||
import { RAGSearch } from "./rag_search";
|
||||
import { MyFilesBrowser } from "./myfiles_browser";
|
||||
import { BilibiliVideoConclusionTool } from "./bilibili_vid_conclusion";
|
||||
|
||||
export class NodeJSTool {
|
||||
@@ -59,7 +59,7 @@ export class NodeJSTool {
|
||||
const bilibiliVideoSearchTool = new BilibiliVideoSearchTool();
|
||||
const bilibiliVideoConclusionTool = new BilibiliVideoConclusionTool();
|
||||
const bilibiliMusicRecognitionTool = new BilibiliMusicRecognitionTool();
|
||||
let tools = [
|
||||
let tools: any = [
|
||||
calculatorTool,
|
||||
webBrowserTool,
|
||||
dallEAPITool,
|
||||
@@ -73,7 +73,9 @@ export class NodeJSTool {
|
||||
bilibiliVideoConclusionTool,
|
||||
];
|
||||
if (!!process.env.ENABLE_RAG) {
|
||||
tools.push(new RAGSearch(this.sessionId, this.model, this.ragEmbeddings));
|
||||
tools.push(
|
||||
new MyFilesBrowser(this.sessionId, this.model, this.ragEmbeddings),
|
||||
);
|
||||
}
|
||||
return tools;
|
||||
}
|
||||
|
||||
@@ -1,79 +0,0 @@
|
||||
import { Tool } from "@langchain/core/tools";
|
||||
import { CallbackManagerForToolRun } from "@langchain/core/callbacks/manager";
|
||||
import { BaseLanguageModel } from "langchain/dist/base_language";
|
||||
import { formatDocumentsAsString } from "langchain/util/document";
|
||||
import { Embeddings } from "langchain/dist/embeddings/base.js";
|
||||
import { RunnableSequence } from "@langchain/core/runnables";
|
||||
import { StringOutputParser } from "@langchain/core/output_parsers";
|
||||
import { Pinecone } from "@pinecone-database/pinecone";
|
||||
import { PineconeStore } from "@langchain/pinecone";
|
||||
import { getServerSideConfig } from "@/app/config/server";
|
||||
import { QdrantVectorStore } from "@langchain/community/vectorstores/qdrant";
|
||||
|
||||
export class RAGSearch extends Tool {
|
||||
static lc_name() {
|
||||
return "RAGSearch";
|
||||
}
|
||||
|
||||
get lc_namespace() {
|
||||
return [...super.lc_namespace, "ragsearch"];
|
||||
}
|
||||
|
||||
private sessionId: string;
|
||||
private model: BaseLanguageModel;
|
||||
private embeddings: Embeddings;
|
||||
|
||||
constructor(
|
||||
sessionId: string,
|
||||
model: BaseLanguageModel,
|
||||
embeddings: Embeddings,
|
||||
) {
|
||||
super();
|
||||
this.sessionId = sessionId;
|
||||
this.model = model;
|
||||
this.embeddings = embeddings;
|
||||
}
|
||||
|
||||
/** @ignore */
|
||||
async _call(inputs: string, runManager?: CallbackManagerForToolRun) {
|
||||
const serverConfig = getServerSideConfig();
|
||||
if (!serverConfig.isEnableRAG)
|
||||
throw new Error("env ENABLE_RAG not configured");
|
||||
// const pinecone = new Pinecone();
|
||||
// const pineconeIndex = pinecone.Index(serverConfig.pineconeIndex!);
|
||||
// const vectorStore = await PineconeStore.fromExistingIndex(this.embeddings, {
|
||||
// pineconeIndex,
|
||||
// });
|
||||
const vectorStore = await QdrantVectorStore.fromExistingCollection(
|
||||
this.embeddings,
|
||||
{
|
||||
url: process.env.QDRANT_URL,
|
||||
apiKey: process.env.QDRANT_API_KEY,
|
||||
collectionName: this.sessionId,
|
||||
},
|
||||
);
|
||||
|
||||
let context;
|
||||
const returnCunt = serverConfig.ragReturnCount
|
||||
? parseInt(serverConfig.ragReturnCount, 10)
|
||||
: 4;
|
||||
console.log("[rag-search]", { inputs, returnCunt });
|
||||
// const results = await vectorStore.similaritySearch(inputs, returnCunt, {
|
||||
// sessionId: this.sessionId,
|
||||
// });
|
||||
const results = await vectorStore.similaritySearch(inputs, returnCunt);
|
||||
context = formatDocumentsAsString(results);
|
||||
console.log("[rag-search]", { context });
|
||||
return context;
|
||||
// const input = `Text:${context}\n\nQuestion:${inputs}\n\nI need you to answer the question based on the text.`;
|
||||
|
||||
// console.log("[rag-search]", input);
|
||||
|
||||
// const chain = RunnableSequence.from([this.model, new StringOutputParser()]);
|
||||
// return chain.invoke(input, runManager?.getChild());
|
||||
}
|
||||
|
||||
name = "rag-search";
|
||||
|
||||
description = `It is used to query documents entered by the user.The input content is the keywords extracted from the user's question, and multiple keywords are separated by spaces and passed in.`;
|
||||
}
|
||||
Reference in New Issue
Block a user