Merge branch 'ChatGPTNextWeb:main' into cloudflare-dev

This commit is contained in:
cbmland
2024-12-22 22:28:03 +08:00
committed by GitHub
191 changed files with 23026 additions and 4150 deletions

View File

@@ -1,22 +1,33 @@
import { getClientConfig } from "../config/client";
import {
ACCESS_CODE_PREFIX,
Azure,
ModelProvider,
ServiceProvider,
} from "../constant";
import { ChatMessage, ModelType, useAccessStore, useChatStore } from "../store";
import { ChatGPTApi } from "./platforms/openai";
import {
ChatMessageTool,
ChatMessage,
ModelType,
useAccessStore,
useChatStore,
} from "../store";
import { ChatGPTApi, DalleRequestPayload } from "./platforms/openai";
import { GeminiProApi } from "./platforms/google";
import { ClaudeApi } from "./platforms/anthropic";
import { ErnieApi } from "./platforms/baidu";
import { DoubaoApi } from "./platforms/bytedance";
import { QwenApi } from "./platforms/alibaba";
import { HunyuanApi } from "./platforms/tencent";
import { MoonshotApi } from "./platforms/moonshot";
import { SparkApi } from "./platforms/iflytek";
import { XAIApi } from "./platforms/xai";
import { ChatGLMApi } from "./platforms/glm";
export const ROLES = ["system", "user", "assistant"] as const;
export type MessageRole = (typeof ROLES)[number];
export const Models = ["gpt-3.5-turbo", "gpt-4"] as const;
export const TTSModels = ["tts-1", "tts-1-hd"] as const;
export type ChatModel = ModelType;
export interface MultimodalContent {
@@ -40,6 +51,18 @@ export interface LLMConfig {
stream?: boolean;
presence_penalty?: number;
frequency_penalty?: number;
size?: DalleRequestPayload["size"];
quality?: DalleRequestPayload["quality"];
style?: DalleRequestPayload["style"];
}
export interface SpeechOptions {
model: string;
input: string;
voice: string;
response_format?: string;
speed?: number;
onController?: (controller: AbortController) => void;
}
export interface ChatOptions {
@@ -47,9 +70,11 @@ export interface ChatOptions {
config: LLMConfig;
onUpdate?: (message: string, chunk: string) => void;
onFinish: (message: string) => void;
onFinish: (message: string, responseRes: Response) => void;
onError?: (err: Error) => void;
onController?: (controller: AbortController) => void;
onBeforeTool?: (tool: ChatMessageTool) => void;
onAfterTool?: (tool: ChatMessageTool) => void;
}
export interface LLMUsage {
@@ -62,16 +87,19 @@ export interface LLMModel {
displayName?: string;
available: boolean;
provider: LLMModelProvider;
sorted: number;
}
export interface LLMModelProvider {
id: string;
providerName: string;
providerType: string;
sorted: number;
}
export abstract class LLMApi {
abstract chat(options: ChatOptions): Promise<void>;
abstract speech(options: SpeechOptions): Promise<ArrayBuffer>;
abstract usage(): Promise<LLMUsage>;
abstract models(): Promise<LLMModel[]>;
}
@@ -117,6 +145,21 @@ export class ClientApi {
case ModelProvider.Qwen:
this.llm = new QwenApi();
break;
case ModelProvider.Hunyuan:
this.llm = new HunyuanApi();
break;
case ModelProvider.Moonshot:
this.llm = new MoonshotApi();
break;
case ModelProvider.Iflytek:
this.llm = new SparkApi();
break;
case ModelProvider.XAI:
this.llm = new XAIApi();
break;
case ModelProvider.ChatGLM:
this.llm = new ChatGLMApi();
break;
default:
this.llm = new ChatGPTApi();
}
@@ -168,24 +211,44 @@ export class ClientApi {
}
}
export function getHeaders() {
export function getBearerToken(
apiKey: string,
noBearer: boolean = false,
): string {
return validString(apiKey)
? `${noBearer ? "" : "Bearer "}${apiKey.trim()}`
: "";
}
export function validString(x: string): boolean {
return x?.length > 0;
}
export function getHeaders(ignoreHeaders: boolean = false) {
const accessStore = useAccessStore.getState();
const chatStore = useChatStore.getState();
const headers: Record<string, string> = {
"Content-Type": "application/json",
Accept: "application/json",
};
let headers: Record<string, string> = {};
if (!ignoreHeaders) {
headers = {
"Content-Type": "application/json",
Accept: "application/json",
};
}
const clientConfig = getClientConfig();
function getConfig() {
const modelConfig = chatStore.currentSession().mask.modelConfig;
const isGoogle = modelConfig.providerName == ServiceProvider.Google;
const isGoogle = modelConfig.providerName === ServiceProvider.Google;
const isAzure = modelConfig.providerName === ServiceProvider.Azure;
const isAnthropic = modelConfig.providerName === ServiceProvider.Anthropic;
const isBaidu = modelConfig.providerName == ServiceProvider.Baidu;
const isByteDance = modelConfig.providerName === ServiceProvider.ByteDance;
const isAlibaba = modelConfig.providerName === ServiceProvider.Alibaba;
const isMoonshot = modelConfig.providerName === ServiceProvider.Moonshot;
const isIflytek = modelConfig.providerName === ServiceProvider.Iflytek;
const isXAI = modelConfig.providerName === ServiceProvider.XAI;
const isChatGLM = modelConfig.providerName === ServiceProvider.ChatGLM;
const isEnabledAccessControl = accessStore.enabledAccessControl();
const apiKey = isGoogle
? accessStore.googleApiKey
@@ -197,6 +260,16 @@ export function getHeaders() {
? accessStore.bytedanceApiKey
: isAlibaba
? accessStore.alibabaApiKey
: isMoonshot
? accessStore.moonshotApiKey
: isXAI
? accessStore.xaiApiKey
: isChatGLM
? accessStore.chatglmApiKey
: isIflytek
? accessStore.iflytekApiKey && accessStore.iflytekApiSecret
? accessStore.iflytekApiKey + ":" + accessStore.iflytekApiSecret
: ""
: accessStore.openaiApiKey;
return {
isGoogle,
@@ -205,24 +278,25 @@ export function getHeaders() {
isBaidu,
isByteDance,
isAlibaba,
isMoonshot,
isIflytek,
isXAI,
isChatGLM,
apiKey,
isEnabledAccessControl,
};
}
function getAuthHeader(): string {
return isAzure ? "api-key" : isAnthropic ? "x-api-key" : "Authorization";
return isAzure
? "api-key"
: isAnthropic
? "x-api-key"
: isGoogle
? "x-goog-api-key"
: "Authorization";
}
function getBearerToken(apiKey: string, noBearer: boolean = false): string {
return validString(apiKey)
? `${noBearer ? "" : "Bearer "}${apiKey.trim()}`
: "";
}
function validString(x: string): boolean {
return x?.length > 0;
}
const {
isGoogle,
isAzure,
@@ -231,14 +305,15 @@ export function getHeaders() {
apiKey,
isEnabledAccessControl,
} = getConfig();
// when using google api in app, not set auth header
if (isGoogle && clientConfig?.isApp) return headers;
// when using baidu api in app, not set auth header
if (isBaidu && clientConfig?.isApp) return headers;
const authHeader = getAuthHeader();
const bearerToken = getBearerToken(apiKey, isAzure || isAnthropic);
const bearerToken = getBearerToken(
apiKey,
isAzure || isAnthropic || isGoogle,
);
if (bearerToken) {
headers[authHeader] = bearerToken;
@@ -262,6 +337,16 @@ export function getClientApi(provider: ServiceProvider): ClientApi {
return new ClientApi(ModelProvider.Doubao);
case ServiceProvider.Alibaba:
return new ClientApi(ModelProvider.Qwen);
case ServiceProvider.Tencent:
return new ClientApi(ModelProvider.Hunyuan);
case ServiceProvider.Moonshot:
return new ClientApi(ModelProvider.Moonshot);
case ServiceProvider.Iflytek:
return new ClientApi(ModelProvider.Iflytek);
case ServiceProvider.XAI:
return new ClientApi(ModelProvider.XAI);
case ServiceProvider.ChatGLM:
return new ClientApi(ModelProvider.ChatGLM);
default:
return new ClientApi(ModelProvider.GPT);
}

View File

@@ -12,6 +12,7 @@ import {
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
MultimodalContent,
} from "../api";
import Locale from "../../locales";
@@ -21,7 +22,8 @@ import {
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import { getMessageTextContent } from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
@@ -83,6 +85,10 @@ export class QwenApi implements LLMApi {
return res?.output?.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
@@ -137,6 +143,7 @@ export class QwenApi implements LLMApi {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
// animate response to make it looks smooth
function animateResponseText() {
@@ -166,13 +173,14 @@ export class QwenApi implements LLMApi {
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
@@ -181,6 +189,7 @@ export class QwenApi implements LLMApi {
"[Alibaba] request response content type: ",
contentType,
);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
@@ -247,7 +256,7 @@ export class QwenApi implements LLMApi {
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);

View File

@@ -1,18 +1,19 @@
import { ACCESS_CODE_PREFIX, Anthropic, ApiPath } from "@/app/constant";
import { ChatOptions, getHeaders, LLMApi, MultimodalContent } from "../api";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import { getClientConfig } from "@/app/config/client";
import { DEFAULT_API_HOST } from "@/app/constant";
import { RequestMessage } from "@/app/typing";
import { Anthropic, ApiPath } from "@/app/constant";
import { ChatOptions, getHeaders, LLMApi, SpeechOptions } from "../api";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import Locale from "../../locales";
import { prettyObject } from "@/app/utils/format";
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
ChatMessageTool,
} from "@/app/store";
import { getClientConfig } from "@/app/config/client";
import { ANTHROPIC_BASE_URL } from "@/app/constant";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import { preProcessImageContent, stream } from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export type MultiBlockContent = {
type: "image" | "text";
@@ -73,6 +74,10 @@ const ClaudeMapper = {
const keys = ["claude-2, claude-instant-1"];
export class ClaudeApi implements LLMApi {
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
extractMessage(res: any) {
console.log("[Response] claude response: ", res);
@@ -93,7 +98,12 @@ export class ClaudeApi implements LLMApi {
},
};
const messages = [...options.messages];
// try get base64image from local cache image_url
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = await preProcessImageContent(v.content);
messages.push({ role: v.role, content });
}
const keys = ["system", "user"];
@@ -186,120 +196,135 @@ export class ClaudeApi implements LLMApi {
const controller = new AbortController();
options.onController?.(controller);
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: {
...getHeaders(), // get common headers
"anthropic-version": accessStore.anthropicApiVersion,
// do not send `anthropicApiKey` in browser!!!
// Authorization: getAuthKey(accessStore.anthropicApiKey),
},
};
if (shouldStream) {
try {
const context = {
text: "",
finished: false,
};
const finish = () => {
if (!context.finished) {
options.onFinish(context.text);
context.finished = true;
}
};
controller.signal.onabort = finish;
fetchEventSource(path, {
...payload,
async onopen(res) {
const contentType = res.headers.get("content-type");
console.log("response content type: ", contentType);
if (contentType?.startsWith("text/plain")) {
context.text = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [context.text];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
context.text = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
delta?: {
type: "text_delta";
text: string;
};
index: number;
let index = -1;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
path,
requestBody,
{
...getHeaders(),
"anthropic-version": accessStore.anthropicApiVersion,
},
// @ts-ignore
tools.map((tool) => ({
name: tool?.function?.name,
description: tool?.function?.description,
input_schema: tool?.function?.parameters,
})),
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
let chunkJson:
| undefined
| {
type: "content_block_delta" | "content_block_stop";
content_block?: {
type: "tool_use";
id: string;
name: string;
};
try {
chunkJson = JSON.parse(msg.data);
} catch (e) {
console.error("[Response] parse error", msg.data);
}
delta?: {
type: "text_delta" | "input_json_delta";
text?: string;
partial_json?: string;
};
index: number;
};
chunkJson = JSON.parse(text);
if (!chunkJson || chunkJson.type === "content_block_stop") {
return finish();
}
const { delta } = chunkJson;
if (delta?.text) {
context.text += delta.text;
options.onUpdate?.(context.text, delta.text);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} catch (e) {
console.error("failed to chat", e);
options.onError?.(e as Error);
}
if (chunkJson?.content_block?.type == "tool_use") {
index += 1;
const id = chunkJson?.content_block.id;
const name = chunkJson?.content_block.name;
runTools.push({
id,
type: "function",
function: {
name,
arguments: "",
},
});
}
if (
chunkJson?.delta?.type == "input_json_delta" &&
chunkJson?.delta?.partial_json
) {
// @ts-ignore
runTools[index]["function"]["arguments"] +=
chunkJson?.delta?.partial_json;
}
return chunkJson?.delta?.text;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// reset index value
index = -1;
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
{
role: "assistant",
content: toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
type: "tool_use",
id: tool.id,
name: tool?.function?.name,
input: tool?.function?.arguments
? JSON.parse(tool?.function?.arguments)
: {},
}),
),
},
// @ts-ignore
...toolCallResult.map((result) => ({
role: "user",
content: [
{
type: "tool_result",
tool_use_id: result.tool_call_id,
content: result.content,
},
],
})),
);
},
options,
);
} else {
const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: {
...getHeaders(), // get common headers
"anthropic-version": accessStore.anthropicApiVersion,
// do not send `anthropicApiKey` in browser!!!
// Authorization: getAuthKey(accessStore.anthropicApiKey),
},
};
try {
controller.signal.onabort = () => options.onFinish("");
controller.signal.onabort = () =>
options.onFinish("", new Response(null, { status: 400 }));
const res = await fetch(path, payload);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
options.onFinish(message, res);
} catch (e) {
console.error("failed to chat", e);
options.onError?.(e as Error);
@@ -365,9 +390,7 @@ export class ClaudeApi implements LLMApi {
if (baseUrl.trim().length === 0) {
const isApp = !!getClientConfig()?.isApp;
baseUrl = isApp
? DEFAULT_API_HOST + "/api/proxy/anthropic"
: ApiPath.Anthropic;
baseUrl = isApp ? ANTHROPIC_BASE_URL : ApiPath.Anthropic;
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith("/api")) {

View File

@@ -14,6 +14,7 @@ import {
LLMApi,
LLMModel,
MultimodalContent,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import {
@@ -23,6 +24,7 @@ import {
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
@@ -75,18 +77,30 @@ export class ErnieApi implements LLMApi {
return [baseUrl, path].join("/");
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
// "error_code": 336006, "error_msg": "the role of message with even index in the messages must be user or function",
role: v.role === "system" ? "user" : v.role,
content: getMessageTextContent(v),
}));
// "error_code": 336006, "error_msg": "the length of messages must be an odd number",
if (messages.length % 2 === 0) {
messages.unshift({
role: "user",
content: " ",
});
if (messages.at(0)?.role === "user") {
messages.splice(1, 0, {
role: "assistant",
content: " ",
});
} else {
messages.unshift({
role: "user",
content: " ",
});
}
}
const modelConfig = {
@@ -148,6 +162,7 @@ export class ErnieApi implements LLMApi {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
// animate response to make it looks smooth
function animateResponseText() {
@@ -177,19 +192,20 @@ export class ErnieApi implements LLMApi {
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log("[Baidu] request response content type: ", contentType);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
@@ -252,7 +268,7 @@ export class ErnieApi implements LLMApi {
const resJson = await res.json();
const message = resJson?.result;
options.onFinish(message);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);

View File

@@ -13,6 +13,7 @@ import {
LLMApi,
LLMModel,
MultimodalContent,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import {
@@ -22,6 +23,7 @@ import {
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
@@ -77,6 +79,10 @@ export class DoubaoApi implements LLMApi {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages = options.messages.map((v) => ({
role: v.role,
@@ -124,6 +130,7 @@ export class DoubaoApi implements LLMApi {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
// animate response to make it looks smooth
function animateResponseText() {
@@ -153,13 +160,14 @@ export class DoubaoApi implements LLMApi {
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
@@ -168,7 +176,7 @@ export class DoubaoApi implements LLMApi {
"[ByteDance] request response content type: ",
contentType,
);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
@@ -234,7 +242,7 @@ export class DoubaoApi implements LLMApi {
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);

197
app/client/platforms/glm.ts Normal file
View File

@@ -0,0 +1,197 @@
"use client";
import {
ApiPath,
CHATGLM_BASE_URL,
ChatGLM,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { stream } from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export class ChatGLMApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.chatglmUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = ApiPath.ChatGLM;
baseUrl = isApp ? CHATGLM_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.ChatGLM)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = getMessageTextContent(v);
messages.push({ role: v.role, content });
}
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
const requestPayload: RequestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
};
console.log("[Request] glm payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(ChatGLM.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
return choices[0]?.delta?.content;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}

View File

@@ -1,34 +1,87 @@
import { Google, REQUEST_TIMEOUT_MS } from "@/app/constant";
import { ChatOptions, getHeaders, LLMApi, LLMModel, LLMUsage } from "../api";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import { getClientConfig } from "@/app/config/client";
import { DEFAULT_API_HOST } from "@/app/constant";
import Locale from "../../locales";
import { ApiPath, Google, REQUEST_TIMEOUT_MS } from "@/app/constant";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
LLMUsage,
SpeechOptions,
} from "../api";
import {
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
ChatMessageTool,
} from "@/app/store";
import { stream } from "@/app/utils/chat";
import { getClientConfig } from "@/app/config/client";
import { GEMINI_BASE_URL } from "@/app/constant";
import {
getMessageTextContent,
getMessageImages,
isVisionModel,
} from "@/app/utils";
import { preProcessImageContent } from "@/app/utils/chat";
import { nanoid } from "nanoid";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export class GeminiProApi implements LLMApi {
path(path: string, shouldStream = false): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.googleUrl;
}
const isApp = !!getClientConfig()?.isApp;
if (baseUrl.length === 0) {
baseUrl = isApp ? GEMINI_BASE_URL : ApiPath.Google;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Google)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
let chatPath = [baseUrl, path].join("/");
if (shouldStream) {
chatPath += chatPath.includes("?") ? "&alt=sse" : "?alt=sse";
}
return chatPath;
}
extractMessage(res: any) {
console.log("[Response] gemini-pro response: ", res);
return (
res?.candidates?.at(0)?.content?.parts.at(0)?.text ||
res?.at(0)?.candidates?.at(0)?.content?.parts.at(0)?.text ||
res?.error?.message ||
""
);
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions): Promise<void> {
const apiClient = this;
let multimodal = false;
const messages = options.messages.map((v) => {
// try get base64image from local cache image_url
const _messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = await preProcessImageContent(v.content);
_messages.push({ role: v.role, content });
}
const messages = _messages.map((v) => {
let parts: any[] = [{ text: getMessageTextContent(v) }];
if (isVisionModel(options.config.model)) {
const images = getMessageImages(v);
@@ -70,6 +123,9 @@ export class GeminiProApi implements LLMApi {
// if (visionModel && messages.length > 1) {
// options.onError?.(new Error("Multiturn chat is not enabled for models/gemini-pro-vision"));
// }
const accessStore = useAccessStore.getState();
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
@@ -91,47 +147,33 @@ export class GeminiProApi implements LLMApi {
safetySettings: [
{
category: "HARM_CATEGORY_HARASSMENT",
threshold: "BLOCK_ONLY_HIGH",
threshold: accessStore.googleSafetySettings,
},
{
category: "HARM_CATEGORY_HATE_SPEECH",
threshold: "BLOCK_ONLY_HIGH",
threshold: accessStore.googleSafetySettings,
},
{
category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
threshold: "BLOCK_ONLY_HIGH",
threshold: accessStore.googleSafetySettings,
},
{
category: "HARM_CATEGORY_DANGEROUS_CONTENT",
threshold: "BLOCK_ONLY_HIGH",
threshold: accessStore.googleSafetySettings,
},
],
};
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.googleUrl;
}
const isApp = !!getClientConfig()?.isApp;
let shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
if (!baseUrl && isApp) {
baseUrl = DEFAULT_API_HOST + "/api/proxy/google/";
}
baseUrl = `${baseUrl}/${Google.ChatPath(modelConfig.model)}`.replaceAll(
"//",
"/",
// https://github.com/google-gemini/cookbook/blob/main/quickstarts/rest/Streaming_REST.ipynb
const chatPath = this.path(
Google.ChatPath(modelConfig.model),
shouldStream,
);
if (isApp) {
baseUrl += `?key=${accessStore.googleApiKey}`;
}
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
@@ -146,120 +188,86 @@ export class GeminiProApi implements LLMApi {
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
chatPath,
requestPayload,
getHeaders(),
// @ts-ignore
tools.length > 0
? // @ts-ignore
[{ functionDeclarations: tools.map((tool) => tool.function) }]
: [],
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const chunkJson = JSON.parse(text);
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
}
};
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
finish();
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
controller.signal.onabort = finish;
// https://github.com/google-gemini/cookbook/blob/main/quickstarts/rest/Streaming_REST.ipynb
const chatPath =
baseUrl.replace("generateContent", "streamGenerateContent") +
(baseUrl.indexOf("?") > -1 ? "&alt=sse" : "?alt=sse");
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[Gemini] request response content type: ",
contentType,
const functionCall = chunkJson?.candidates
?.at(0)
?.content.parts.at(0)?.functionCall;
if (functionCall) {
const { name, args } = functionCall;
runTools.push({
id: nanoid(),
type: "function",
function: {
name,
arguments: JSON.stringify(args), // utils.chat call function, using JSON.parse
},
});
}
return chunkJson?.candidates?.at(0)?.content.parts.at(0)?.text;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.contents?.splice(
// @ts-ignore
requestPayload?.contents?.length,
0,
{
role: "model",
parts: toolCallMessage.tool_calls.map(
(tool: ChatMessageTool) => ({
functionCall: {
name: tool?.function?.name,
args: JSON.parse(tool?.function?.arguments as string),
},
}),
),
},
// @ts-ignore
...toolCallResult.map((result) => ({
role: "function",
parts: [
{
functionResponse: {
name: result.name,
response: {
name: result.name,
content: result.content, // TODO just text content...
},
},
},
],
})),
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const delta = apiClient.extractMessage(json);
if (delta) {
remainText += delta;
}
const blockReason = json?.promptFeedback?.blockReason;
if (blockReason) {
// being blocked
console.log(`[Google] [Safety Ratings] result:`, blockReason);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
options,
);
} else {
const res = await fetch(baseUrl, chatPayload);
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
if (resJson?.promptFeedback?.blockReason) {
@@ -272,7 +280,7 @@ export class GeminiProApi implements LLMApi {
);
}
const message = apiClient.extractMessage(resJson);
options.onFinish(message);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
@@ -285,14 +293,4 @@ export class GeminiProApi implements LLMApi {
async models(): Promise<LLMModel[]> {
return [];
}
path(path: string): string {
return "/api/google/" + path;
}
}
function ensureProperEnding(str: string) {
if (str.startsWith("[") && !str.endsWith("]")) {
return str + "]";
}
return str;
}

View File

@@ -0,0 +1,253 @@
"use client";
import {
ApiPath,
IFLYTEK_BASE_URL,
Iflytek,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { fetch } from "@/app/utils/stream";
import { RequestPayload } from "./openai";
export class SparkApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.iflytekUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = ApiPath.Iflytek;
baseUrl = isApp ? IFLYTEK_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Iflytek)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = getMessageTextContent(v);
messages.push({ role: v.role, content });
}
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
const requestPayload: RequestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
console.log("[Request] Spark payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(Iflytek.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// Make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
// Animate response text to make it look smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// Start animation
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log("[Spark] request response content type: ", contentType);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
// Handle different error scenarios
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
extraInfo = Locale.Error.Unauthorized;
}
options.onError?.(
new Error(
`Request failed with status ${res.status}: ${extraInfo}`,
),
);
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
if (delta) {
remainText += delta;
}
} catch (e) {
console.error("[Request] parse error", text);
options.onError?.(new Error(`Failed to parse response: ${text}`));
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
if (!res.ok) {
const errorText = await res.text();
options.onError?.(
new Error(`Request failed with status ${res.status}: ${errorText}`),
);
return;
}
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}

View File

@@ -0,0 +1,200 @@
"use client";
// azure and openai, using same models. so using same LLMApi.
import {
ApiPath,
MOONSHOT_BASE_URL,
Moonshot,
REQUEST_TIMEOUT_MS,
} from "@/app/constant";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { stream } from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export class MoonshotApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.moonshotUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = ApiPath.Moonshot;
baseUrl = isApp ? MOONSHOT_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Moonshot)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = getMessageTextContent(v);
messages.push({ role: v.role, content });
}
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
const requestPayload: RequestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(Moonshot.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
return choices[0]?.delta?.content;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}

View File

@@ -2,16 +2,29 @@
// azure and openai, using same models. so using same LLMApi.
import {
ApiPath,
DEFAULT_API_HOST,
OPENAI_BASE_URL,
DEFAULT_MODELS,
OpenaiPath,
Azure,
REQUEST_TIMEOUT_MS,
ServiceProvider,
} from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
ChatMessageTool,
useAccessStore,
useAppConfig,
useChatStore,
usePluginStore,
} from "@/app/store";
import { collectModelsWithDefaultModel } from "@/app/utils/model";
import {
preProcessImageContent,
uploadImage,
base64Image2Blob,
stream,
} from "@/app/utils/chat";
import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare";
import { DalleSize, DalleQuality, DalleStyle } from "@/app/typing";
import {
ChatOptions,
@@ -20,19 +33,16 @@ import {
LLMModel,
LLMUsage,
MultimodalContent,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageImages,
isVisionModel,
isDalle3 as _isDalle3,
} from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
@@ -55,6 +65,17 @@ export interface RequestPayload {
frequency_penalty: number;
top_p: number;
max_tokens?: number;
max_completion_tokens?: number;
}
export interface DalleRequestPayload {
model: string;
prompt: string;
response_format: "url" | "b64_json";
n: number;
size: DalleSize;
quality: DalleQuality;
style: DalleStyle;
}
export class ChatGPTApi implements LLMApi {
@@ -79,7 +100,7 @@ export class ChatGPTApi implements LLMApi {
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = isAzure ? ApiPath.Azure : ApiPath.OpenAI;
baseUrl = isApp ? DEFAULT_API_HOST + "/proxy" + apiPath : apiPath;
baseUrl = isApp ? OPENAI_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
@@ -99,17 +120,69 @@ export class ChatGPTApi implements LLMApi {
return cloudflareAIGatewayUrl([baseUrl, path].join("/"));
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
async extractMessage(res: any) {
if (res.error) {
return "```\n" + JSON.stringify(res, null, 4) + "\n```";
}
// dalle3 model return url, using url create image message
if (res.data) {
let url = res.data?.at(0)?.url ?? "";
const b64_json = res.data?.at(0)?.b64_json ?? "";
if (!url && b64_json) {
// uploadImage
url = await uploadImage(base64Image2Blob(b64_json, "image/png"));
}
return [
{
type: "image_url",
image_url: {
url,
},
},
];
}
return res.choices?.at(0)?.message?.content ?? res;
}
async speech(options: SpeechOptions): Promise<ArrayBuffer> {
const requestPayload = {
model: options.model,
input: options.input,
voice: options.voice,
response_format: options.response_format,
speed: options.speed,
};
console.log("[Request] openai speech payload: ", requestPayload);
const controller = new AbortController();
options.onController?.(controller);
try {
const speechPath = this.path(OpenaiPath.SpeechPath);
const speechPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
const res = await fetch(speechPath, speechPayload);
clearTimeout(requestTimeoutId);
return await res.arrayBuffer();
} catch (e) {
console.log("[Request] failed to make a speech request", e);
throw e;
}
}
async chat(options: ChatOptions) {
const visionModel = isVisionModel(options.config.model);
const messages = options.messages.map((v) => ({
role: v.role,
content: visionModel ? v.content : getMessageTextContent(v),
}));
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
@@ -119,26 +192,62 @@ export class ChatGPTApi implements LLMApi {
},
};
const requestPayload: RequestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
let requestPayload: RequestPayload | DalleRequestPayload;
// add max_tokens to vision model
if (visionModel && modelConfig.model.includes("preview")) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
const isDalle3 = _isDalle3(options.config.model);
const isO1 = options.config.model.startsWith("o1");
if (isDalle3) {
const prompt = getMessageTextContent(
options.messages.slice(-1)?.pop() as any,
);
requestPayload = {
model: options.config.model,
prompt,
// URLs are only valid for 60 minutes after the image has been generated.
response_format: "b64_json", // using b64_json, and save image in CacheStorage
n: 1,
size: options.config?.size ?? "1024x1024",
quality: options.config?.quality ?? "standard",
style: options.config?.style ?? "vivid",
};
} else {
const visionModel = isVisionModel(options.config.model);
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = visionModel
? await preProcessImageContent(v.content)
: getMessageTextContent(v);
if (!(isO1 && v.role === "system"))
messages.push({ role: v.role, content });
}
// O1 not support image, tools (plugin in ChatGPTNextWeb) and system, stream, logprobs, temperature, top_p, n, presence_penalty, frequency_penalty yet.
requestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: !isO1 ? modelConfig.temperature : 1,
presence_penalty: !isO1 ? modelConfig.presence_penalty : 0,
frequency_penalty: !isO1 ? modelConfig.frequency_penalty : 0,
top_p: !isO1 ? modelConfig.top_p : 1,
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
};
// O1 使用 max_completion_tokens 控制token数 (https://platform.openai.com/docs/guides/reasoning#controlling-costs)
if (isO1) {
requestPayload["max_completion_tokens"] = modelConfig.max_tokens;
}
// add max_tokens to vision model
if (visionModel) {
requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000);
}
}
console.log("[Request] openai payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const shouldStream = !isDalle3 && !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
@@ -164,157 +273,101 @@ export class ChatGPTApi implements LLMApi {
model?.provider?.providerName === ServiceProvider.Azure,
);
chatPath = this.path(
Azure.ChatPath(
(isDalle3 ? Azure.ImagePath : Azure.ChatPath)(
(model?.displayName ?? model?.name) as string,
useCustomConfig ? useAccessStore.getState().azureApiVersion : "",
),
);
} else {
chatPath = this.path(OpenaiPath.ChatPath);
chatPath = this.path(
isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath,
);
}
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
let index = -1;
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
// console.log("getAsTools", tools, funcs);
stream(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
index += 1;
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText);
}
return choices[0]?.delta?.content;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// reset index value
index = -1;
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
controller.signal.onabort = finish;
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
isDalle3 || isO1 ? REQUEST_TIMEOUT_MS * 4 : REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
);
fetchEventSource(chatPath, {
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[OpenAI] request response content type: ",
contentType,
);
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: { content: string };
}>;
const delta = choices[0]?.delta?.content;
const textmoderation = json?.prompt_filter_results;
if (delta) {
remainText += delta;
}
if (
textmoderation &&
textmoderation.length > 0 &&
ServiceProvider.Azure
) {
const contentFilterResults =
textmoderation[0]?.content_filter_results;
console.log(
`[${ServiceProvider.Azure}] [Text Moderation] flagged categories result:`,
contentFilterResults,
);
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message);
const message = await this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
@@ -400,20 +453,26 @@ export class ChatGPTApi implements LLMApi {
});
const resJson = (await res.json()) as OpenAIListModelResponse;
const chatModels = resJson.data?.filter((m) => m.id.startsWith("gpt-"));
const chatModels = resJson.data?.filter(
(m) => m.id.startsWith("gpt-") || m.id.startsWith("chatgpt-"),
);
console.log("[Models]", chatModels);
if (!chatModels) {
return [];
}
//由于目前 OpenAI 的 disableListModels 默认为 true所以当前实际不会运行到这场
let seq = 1000; //同 Constant.ts 中的排序保持一致
return chatModels.map((m) => ({
name: m.id,
available: true,
sorted: seq++,
provider: {
id: "openai",
providerName: "OpenAI",
providerType: "openai",
sorted: 1,
},
}));
}

View File

@@ -0,0 +1,274 @@
"use client";
import { ApiPath, TENCENT_BASE_URL, REQUEST_TIMEOUT_MS } from "@/app/constant";
import { useAccessStore, useAppConfig, useChatStore } from "@/app/store";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
MultimodalContent,
SpeechOptions,
} from "../api";
import Locale from "../../locales";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent, isVisionModel } from "@/app/utils";
import mapKeys from "lodash-es/mapKeys";
import mapValues from "lodash-es/mapValues";
import isArray from "lodash-es/isArray";
import isObject from "lodash-es/isObject";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
interface RequestPayload {
Messages: {
Role: "system" | "user" | "assistant";
Content: string | MultimodalContent[];
}[];
Stream?: boolean;
Model: string;
Temperature: number;
TopP: number;
}
function capitalizeKeys(obj: any): any {
if (isArray(obj)) {
return obj.map(capitalizeKeys);
} else if (isObject(obj)) {
return mapValues(
mapKeys(obj, (value: any, key: string) =>
key.replace(/(^|_)(\w)/g, (m, $1, $2) => $2.toUpperCase()),
),
capitalizeKeys,
);
} else {
return obj;
}
}
export class HunyuanApi implements LLMApi {
path(): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.tencentUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
baseUrl = isApp ? TENCENT_BASE_URL : ApiPath.Tencent;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Tencent)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl);
return baseUrl;
}
extractMessage(res: any) {
return res.Choices?.at(0)?.Message?.Content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const visionModel = isVisionModel(options.config.model);
const messages = options.messages.map((v, index) => ({
// "Messages 中 system 角色必须位于列表的最开始"
role: index !== 0 && v.role === "system" ? "user" : v.role,
content: visionModel ? v.content : getMessageTextContent(v),
}));
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
},
};
const requestPayload: RequestPayload = capitalizeKeys({
model: modelConfig.model,
messages,
temperature: modelConfig.temperature,
top_p: modelConfig.top_p,
stream: options.config.stream,
});
console.log("[Request] Tencent payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path();
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
let responseText = "";
let remainText = "";
let finished = false;
let responseRes: Response;
// animate response to make it looks smooth
function animateResponseText() {
if (finished || controller.signal.aborted) {
responseText += remainText;
console.log("[Response Animation] finished");
if (responseText?.length === 0) {
options.onError?.(new Error("empty response from server"));
}
return;
}
if (remainText.length > 0) {
const fetchCount = Math.max(1, Math.round(remainText.length / 60));
const fetchText = remainText.slice(0, fetchCount);
responseText += fetchText;
remainText = remainText.slice(fetchCount);
options.onUpdate?.(responseText, fetchText);
}
requestAnimationFrame(animateResponseText);
}
// start animaion
animateResponseText();
const finish = () => {
if (!finished) {
finished = true;
options.onFinish(responseText + remainText, responseRes);
}
};
controller.signal.onabort = finish;
fetchEventSource(chatPath, {
fetch: fetch as any,
...chatPayload,
async onopen(res) {
clearTimeout(requestTimeoutId);
const contentType = res.headers.get("content-type");
console.log(
"[Tencent] request response content type: ",
contentType,
);
responseRes = res;
if (contentType?.startsWith("text/plain")) {
responseText = await res.clone().text();
return finish();
}
if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [responseText];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}
if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}
if (extraInfo) {
responseTexts.push(extraInfo);
}
responseText = responseTexts.join("\n\n");
return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || finished) {
return finish();
}
const text = msg.data;
try {
const json = JSON.parse(text);
const choices = json.Choices as Array<{
Delta: { Content: string };
}>;
const delta = choices[0]?.Delta?.Content;
if (delta) {
remainText += delta;
}
} catch (e) {
console.error("[Request] parse error", text, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
throw e;
},
openWhenHidden: true,
});
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}

193
app/client/platforms/xai.ts Normal file
View File

@@ -0,0 +1,193 @@
"use client";
// azure and openai, using same models. so using same LLMApi.
import { ApiPath, XAI_BASE_URL, XAI, REQUEST_TIMEOUT_MS } from "@/app/constant";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
} from "@/app/store";
import { stream } from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import { getMessageTextContent } from "@/app/utils";
import { RequestPayload } from "./openai";
import { fetch } from "@/app/utils/stream";
export class XAIApi implements LLMApi {
private disableListModels = true;
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.xaiUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
const apiPath = ApiPath.XAI;
baseUrl = isApp ? XAI_BASE_URL : apiPath;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.XAI)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res.choices?.at(0)?.message?.content ?? "";
}
speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async chat(options: ChatOptions) {
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = getMessageTextContent(v);
messages.push({ role: v.role, content });
}
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
providerName: options.config.providerName,
},
};
const requestPayload: RequestPayload = {
messages,
stream: options.config.stream,
model: modelConfig.model,
temperature: modelConfig.temperature,
presence_penalty: modelConfig.presence_penalty,
frequency_penalty: modelConfig.frequency_penalty,
top_p: modelConfig.top_p,
};
console.log("[Request] xai payload: ", requestPayload);
const shouldStream = !!options.config.stream;
const controller = new AbortController();
options.onController?.(controller);
try {
const chatPath = this.path(XAI.ChatPath);
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: getHeaders(),
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
REQUEST_TIMEOUT_MS,
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
return stream(
chatPath,
requestPayload,
getHeaders(),
tools as any,
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.choices as Array<{
delta: {
content: string;
tool_calls: ChatMessageTool[];
};
}>;
const tool_calls = choices[0]?.delta?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args;
}
}
return choices[0]?.delta?.content;
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
// @ts-ignore
requestPayload?.messages?.splice(
// @ts-ignore
requestPayload?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}