alpha version

This commit is contained in:
Hk-Gosuto
2024-04-05 17:38:06 +08:00
parent ac57b2c770
commit 958ab02d1e
16 changed files with 1118 additions and 177 deletions

View File

@@ -0,0 +1,105 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAIEmbeddings } from "@langchain/openai";
import { Pinecone } from "@pinecone-database/pinecone";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
interface RequestBody {
sessionId: string;
query: string;
baseUrl?: string;
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
return NextResponse.json({ body: "OK" }, { status: 200 });
}
try {
const authResult = auth(req, ModelProvider.GPT);
if (authResult.error) {
return NextResponse.json(authResult, {
status: 401,
});
}
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
const embeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
pineconeIndex,
});
const results = await vectorStore.similaritySearch(reqBody.query, 1, {
sessionId: reqBody.sessionId,
});
console.log(results);
return NextResponse.json(results, {
status: 200,
});
} catch (e) {
console.error(e);
return new Response(JSON.stringify({ error: (e as any).message }), {
status: 500,
headers: { "Content-Type": "application/json" },
});
}
}
function getOpenAIApiKey(token: string) {
const serverConfig = getServerSideConfig();
const isApiKey = !token.startsWith(ACCESS_CODE_PREFIX);
let apiKey = serverConfig.apiKey;
if (isApiKey && token) {
apiKey = token;
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
if (serverConfig.baseUrl) baseUrl = serverConfig.baseUrl;
if (reqBaseUrl?.startsWith("http://") || reqBaseUrl?.startsWith("https://"))
baseUrl = reqBaseUrl;
if (!baseUrl.endsWith("/v1"))
baseUrl = baseUrl.endsWith("/") ? `${baseUrl}v1` : `${baseUrl}/v1`;
console.log("[baseUrl]", baseUrl);
return baseUrl;
}
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@@ -1,16 +1,66 @@
import { NextRequest, NextResponse } from "next/server";
import { auth } from "@/app/api/auth";
import { NodeJSTool } from "@/app/api/langchain-tools/nodejs_tools";
import { ACCESS_CODE_PREFIX, ModelProvider } from "@/app/constant";
import { OpenAI, OpenAIEmbeddings } from "@langchain/openai";
import path from "path";
import { PDFLoader } from "langchain/document_loaders/fs/pdf";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { CSVLoader } from "langchain/document_loaders/fs/csv";
import { DocxLoader } from "langchain/document_loaders/fs/docx";
import { EPubLoader } from "langchain/document_loaders/fs/epub";
import { JSONLoader } from "langchain/document_loaders/fs/json";
import { JSONLinesLoader } from "langchain/document_loaders/fs/json";
import { OpenAIWhisperAudio } from "langchain/document_loaders/fs/openai_whisper_audio";
// import { PPTXLoader } from "langchain/document_loaders/fs/pptx";
import { SRTLoader } from "langchain/document_loaders/fs/srt";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { Pinecone } from "@pinecone-database/pinecone";
import { Document } from "@langchain/core/documents";
import { PineconeStore } from "@langchain/pinecone";
import { getServerSideConfig } from "@/app/config/server";
import { RequestBody } from "../../tool/agent/agentapi";
import { FileInfo } from "@/app/client/platforms/utils";
import mime from "mime";
import LocalFileStorage from "@/app/utils/local_file_storage";
import S3FileStorage from "@/app/utils/s3_file_storage";
interface RequestBody {
sessionId: string;
fileInfos: FileInfo[];
baseUrl?: string;
}
function getLoader(
fileName: string,
fileBlob: Blob,
openaiApiKey: string,
openaiBaseUrl: string,
) {
const extension = fileName.split(".").pop();
switch (extension) {
case "txt":
case "md":
return new TextLoader(fileBlob);
case "pdf":
return new PDFLoader(fileBlob);
case "docx":
return new DocxLoader(fileBlob);
case "csv":
return new CSVLoader(fileBlob);
case "json":
return new JSONLoader(fileBlob);
// case 'pptx':
// return new PPTXLoader(fileBlob);
case "srt":
return new SRTLoader(fileBlob);
case "mp3":
return new OpenAIWhisperAudio(fileBlob, {
clientOptions: {
apiKey: openaiApiKey,
baseURL: openaiBaseUrl,
},
});
default:
throw new Error(`Unsupported file type: ${extension}`);
}
}
async function handle(req: NextRequest) {
if (req.method === "OPTIONS") {
@@ -27,88 +77,70 @@ async function handle(req: NextRequest) {
const reqBody: RequestBody = await req.json();
const authToken = req.headers.get("Authorization") ?? "";
const token = authToken.trim().replaceAll("Bearer ", "").trim();
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
// const formData = await req.formData();
// const file = formData.get("file") as File;
// const originalFileName = file?.name;
// const fileReader = file.stream().getReader();
// const fileData: number[] = [];
// while (true) {
// const { done, value } = await fileReader.read();
// if (done) break;
// fileData.push(...value);
// }
// const buffer = Buffer.from(fileData);
// const fileType = path.extname(originalFileName).slice(1);
// const fileBlob = bufferToBlob(buffer, "application/pdf")
// const loader = new PDFLoader(fileBlob);
// const docs = await loader.load();
// const textSplitter = new RecursiveCharacterTextSplitter({
// chunkSize: 1000,
// chunkOverlap: 200,
// });
// const splits = await textSplitter.splitDocuments(docs);
const pinecone = new Pinecone();
// await pinecone.createIndex({
// name: 'example-index',
// dimension: 1536,
// metric: 'cosine',
// spec: {
// pod: {
// environment: 'gcp-starter',
// podType: 'p1.x1',
// pods: 1
// }
// }
// });
const pineconeIndex = pinecone.Index("example-index");
const docs = [
new Document({
metadata: { foo: "bar" },
pageContent: "pinecone is a vector db",
}),
new Document({
metadata: { foo: "bar" },
pageContent: "the quick brown fox jumped over the lazy dog",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "lorem ipsum dolor sit amet",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "pinecones are the woody fruiting body and of a pine tree",
}),
];
const apiKey = getOpenAIApiKey(token);
const baseUrl = getOpenAIBaseUrl(reqBody.baseUrl);
console.log(baseUrl);
const serverConfig = getServerSideConfig();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.Index(process.env.PINECONE_INDEX!);
const embeddings = new OpenAIEmbeddings(
{
modelName: "text-embedding-ada-002",
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
await PineconeStore.fromDocuments(docs, embeddings, {
pineconeIndex,
maxConcurrency: 5,
});
const vectorStore = await PineconeStore.fromExistingIndex(embeddings, {
pineconeIndex,
});
const results = await vectorStore.similaritySearch("pinecone", 1, {
foo: "bar",
});
console.log(results);
//https://js.langchain.com/docs/integrations/vectorstores/pinecone
// process files
for (let i = 0; i < reqBody.fileInfos.length; i++) {
const fileInfo = reqBody.fileInfos[i];
const contentType = mime.getType(fileInfo.fileName);
// get file buffer
var fileBuffer: Buffer | undefined;
if (serverConfig.isStoreFileToLocal) {
fileBuffer = await LocalFileStorage.get(fileInfo.fileName);
} else {
var file = await S3FileStorage.get(fileInfo.fileName);
var fileByteArray = await file?.transformToByteArray();
if (fileByteArray) fileBuffer = Buffer.from(fileByteArray);
}
if (!fileBuffer || !contentType) {
console.error(`get ${fileInfo.fileName} buffer fail`);
continue;
}
// load file to docs
const fileBlob = bufferToBlob(fileBuffer, contentType);
const loader = getLoader(fileInfo.fileName, fileBlob, apiKey, baseUrl);
const docs = await loader.load();
// modify doc meta
docs.forEach((doc) => {
doc.metadata = {
...doc.metadata,
sessionId: reqBody.sessionId,
sourceFileName: fileInfo.originalFilename,
fileName: fileInfo.fileName,
};
});
// split
const chunkSize = process.env.RAG_CHUNK_SIZE
? parseInt(process.env.RAG_CHUNK_SIZE, 10)
: 2000;
const chunkOverlap = process.env.RAG_CHUNK_OVERLAP
? parseInt(process.env.RAG_CHUNK_OVERLAP, 10)
: 200;
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
});
const splits = await textSplitter.splitDocuments(docs);
// remove history
await PineconeStore.fromDocuments(splits, embeddings, {
pineconeIndex,
maxConcurrency: 5,
});
}
return NextResponse.json(
{
storeId: "",
sessionId: reqBody.sessionId,
},
{
status: 200,
@@ -140,7 +172,6 @@ function getOpenAIApiKey(token: string) {
}
return apiKey;
}
function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
const serverConfig = getServerSideConfig();
let baseUrl = "https://api.openai.com/v1";
@@ -153,7 +184,25 @@ function getOpenAIBaseUrl(reqBaseUrl: string | undefined) {
return baseUrl;
}
export const GET = handle;
export const POST = handle;
export const runtime = "nodejs";
export const preferredRegion = [
"arn1",
"bom1",
"cdg1",
"cle1",
"cpt1",
"dub1",
"fra1",
"gru1",
"hnd1",
"iad1",
"icn1",
"kix1",
"lhr1",
"pdx1",
"sfo1",
"sin1",
"syd1",
];

View File

@@ -44,6 +44,7 @@ export interface RequestMessage {
}
export interface RequestBody {
chatSessionId: string;
messages: RequestMessage[];
isAzure: boolean;
azureApiVersion?: string;

View File

@@ -44,6 +44,13 @@ async function handle(req: NextRequest) {
},
{ basePath: baseUrl },
);
const ragEmbeddings = new OpenAIEmbeddings(
{
modelName: process.env.RAG_EMBEDDING_MODEL ?? "text-embedding-3-large",
openAIApiKey: apiKey,
},
{ basePath: baseUrl },
);
var dalleCallback = async (data: string) => {
var response = new ResponseBody();
@@ -62,6 +69,8 @@ async function handle(req: NextRequest) {
baseUrl,
model,
embeddings,
reqBody.chatSessionId,
ragEmbeddings,
dalleCallback,
);
var nodejsTools = await nodejsTool.getCustomTools();