mirror of
https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
synced 2025-09-27 05:36:39 +08:00
242 lines
6.6 KiB
TypeScript
242 lines
6.6 KiB
TypeScript
"use client";
|
|
// azure and openai, using same models. so using same LLMApi.
|
|
import {
|
|
ApiPath,
|
|
SILICONFLOW_BASE_URL,
|
|
SiliconFlow,
|
|
DEFAULT_MODELS,
|
|
} from "@/app/constant";
|
|
import {
|
|
useAccessStore,
|
|
useAppConfig,
|
|
useChatStore,
|
|
ChatMessageTool,
|
|
usePluginStore,
|
|
} from "@/app/store";
|
|
import { preProcessImageContent, streamWithThink } from "@/app/utils/chat";
|
|
import {
|
|
ChatOptions,
|
|
getHeaders,
|
|
LLMApi,
|
|
LLMModel,
|
|
SpeechOptions,
|
|
} from "../api";
|
|
import { getClientConfig } from "@/app/config/client";
|
|
import {
|
|
getMessageTextContent,
|
|
getMessageTextContentWithoutThinking,
|
|
isVisionModel,
|
|
getTimeoutMSByModel,
|
|
} from "@/app/utils";
|
|
import { RequestPayload } from "./openai";
|
|
|
|
import { fetch } from "@/app/utils/stream";
|
|
export interface SiliconFlowListModelResponse {
|
|
object: string;
|
|
data: Array<{
|
|
id: string;
|
|
object: string;
|
|
root: string;
|
|
}>;
|
|
}
|
|
|
|
export class SiliconflowApi implements LLMApi {
|
|
private disableListModels = false;
|
|
|
|
path(path: string): string {
|
|
const accessStore = useAccessStore.getState();
|
|
|
|
let baseUrl = "";
|
|
|
|
if (accessStore.useCustomConfig) {
|
|
baseUrl = accessStore.siliconflowUrl;
|
|
}
|
|
|
|
if (baseUrl.length === 0) {
|
|
const isApp = !!getClientConfig()?.isApp;
|
|
const apiPath = ApiPath.SiliconFlow;
|
|
baseUrl = isApp ? SILICONFLOW_BASE_URL : apiPath;
|
|
}
|
|
|
|
if (baseUrl.endsWith("/")) {
|
|
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
|
|
}
|
|
if (
|
|
!baseUrl.startsWith("http") &&
|
|
!baseUrl.startsWith(ApiPath.SiliconFlow)
|
|
) {
|
|
baseUrl = "https://" + baseUrl;
|
|
}
|
|
|
|
console.log("[Proxy Endpoint] ", baseUrl, path);
|
|
|
|
return [baseUrl, path].join("/");
|
|
}
|
|
|
|
extractMessage(res: any) {
|
|
return res.choices?.at(0)?.message?.content ?? "";
|
|
}
|
|
|
|
speech(options: SpeechOptions): Promise<ArrayBuffer> {
|
|
throw new Error("Method not implemented.");
|
|
}
|
|
|
|
async chat(options: ChatOptions) {
|
|
const visionModel = isVisionModel(options.config.model);
|
|
const messages: ChatOptions["messages"] = [];
|
|
for (const v of options.messages) {
|
|
if (v.role === "assistant") {
|
|
const content = getMessageTextContentWithoutThinking(v);
|
|
messages.push({ role: v.role, content });
|
|
} else {
|
|
const content = visionModel
|
|
? await preProcessImageContent(v.content)
|
|
: getMessageTextContent(v);
|
|
messages.push({ role: v.role, content });
|
|
}
|
|
}
|
|
|
|
const modelConfig = {
|
|
...useAppConfig.getState().modelConfig,
|
|
...useChatStore.getState().currentSession().mask.modelConfig,
|
|
...{
|
|
model: options.config.model,
|
|
providerName: options.config.providerName,
|
|
},
|
|
};
|
|
|
|
const requestPayload: RequestPayload = {
|
|
messages,
|
|
stream: options.config.stream,
|
|
model: modelConfig.model,
|
|
temperature: modelConfig.temperature,
|
|
presence_penalty: modelConfig.presence_penalty,
|
|
frequency_penalty: modelConfig.frequency_penalty,
|
|
top_p: modelConfig.top_p,
|
|
// max_tokens: Math.max(modelConfig.max_tokens, 1024),
|
|
// Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
|
|
};
|
|
|
|
console.log("[Request] openai payload: ", requestPayload);
|
|
|
|
const shouldStream = !!options.config.stream;
|
|
const controller = new AbortController();
|
|
options.onController?.(controller);
|
|
|
|
try {
|
|
const chatPath = this.path(SiliconFlow.ChatPath);
|
|
const chatPayload = {
|
|
method: "POST",
|
|
body: JSON.stringify(requestPayload),
|
|
signal: controller.signal,
|
|
headers: getHeaders(),
|
|
};
|
|
|
|
// console.log(chatPayload);
|
|
|
|
// Use extended timeout for thinking models as they typically require more processing time
|
|
const requestTimeoutId = setTimeout(
|
|
() => controller.abort(),
|
|
getTimeoutMSByModel(options.config.model),
|
|
);
|
|
|
|
if (shouldStream) {
|
|
const [tools, funcs] = usePluginStore
|
|
.getState()
|
|
.getAsTools(
|
|
useChatStore.getState().currentSession().mask?.plugin || [],
|
|
);
|
|
return streamWithThink(
|
|
chatPath,
|
|
requestPayload,
|
|
getHeaders(),
|
|
tools as any,
|
|
funcs,
|
|
controller,
|
|
// parseSSE mới cho SiliconFlow response
|
|
(text: string, runTools: ChatMessageTool[]) => {
|
|
// Parse chuỗi JSON trả về thành đối tượng
|
|
const json = JSON.parse(text);
|
|
|
|
// Lấy nội dung trả lời từ output.text
|
|
const content = json?.output?.text ?? "";
|
|
|
|
// Nếu không có nội dung trả lời, trả về trạng thái không suy nghĩ và nội dung rỗng
|
|
if (!content || content.length === 0) {
|
|
return {
|
|
isThinking: false,
|
|
content: "",
|
|
};
|
|
}
|
|
|
|
// Trả về trạng thái không suy nghĩ và nội dung trả lời
|
|
return {
|
|
isThinking: false,
|
|
content: content,
|
|
};
|
|
},
|
|
// processToolMessage: SiliconFlow không có tool_call nên giữ nguyên hoặc để rỗng
|
|
(
|
|
requestPayload: RequestPayload,
|
|
toolCallMessage: any,
|
|
toolCallResult: any[],
|
|
) => {
|
|
// Không cần xử lý tool_call, có thể để trống hoặc giữ nguyên nếu muốn tương thích
|
|
},
|
|
options,
|
|
);
|
|
} else {
|
|
const res = await fetch(chatPath, chatPayload);
|
|
clearTimeout(requestTimeoutId);
|
|
|
|
const resJson = await res.json();
|
|
const message = this.extractMessage(resJson);
|
|
options.onFinish(message, res);
|
|
}
|
|
} catch (e) {
|
|
console.log("[Request] failed to make a chat request", e);
|
|
options.onError?.(e as Error);
|
|
}
|
|
}
|
|
async usage() {
|
|
return {
|
|
used: 0,
|
|
total: 0,
|
|
};
|
|
}
|
|
|
|
async models(): Promise<LLMModel[]> {
|
|
if (this.disableListModels) {
|
|
return DEFAULT_MODELS.slice();
|
|
}
|
|
|
|
const res = await fetch(this.path(SiliconFlow.ListModelPath), {
|
|
method: "GET",
|
|
headers: {
|
|
...getHeaders(),
|
|
},
|
|
});
|
|
|
|
const resJson = (await res.json()) as SiliconFlowListModelResponse;
|
|
const chatModels = resJson.data;
|
|
console.log("[Models]", chatModels);
|
|
|
|
if (!chatModels) {
|
|
return [];
|
|
}
|
|
|
|
let seq = 1000; //同 Constant.ts 中的排序保持一致
|
|
return chatModels.map((m) => ({
|
|
name: m.id,
|
|
available: true,
|
|
sorted: seq++,
|
|
provider: {
|
|
id: "siliconflow",
|
|
providerName: "SiliconFlow",
|
|
providerType: "siliconflow",
|
|
sorted: 14,
|
|
},
|
|
}));
|
|
}
|
|
}
|