ChatGPT-Next-Web/app/client/platforms/alibaba.ts

380 lines
10 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use client";
import { ApiPath, Alibaba, ALIBABA_BASE_URL } from "@/app/constant";
import {
useAccessStore,
useAppConfig,
useChatStore,
ChatMessageTool,
usePluginStore,
FunctionToolItem,
} from "@/app/store";
import { TTSPlayManager } from "@/app/utils/audio";
import {
preProcessImageContentForAlibabaDashScope,
streamWithThink,
} from "@/app/utils/chat";
import {
ChatOptions,
getHeaders,
LLMApi,
LLMModel,
SpeechOptions,
MultimodalContent,
MultimodalContentForAlibaba,
} from "../api";
import { getClientConfig } from "@/app/config/client";
import {
getMessageTextContent,
getMessageTextContentWithoutThinking,
getTimeoutMSByModel,
isVisionModel,
} from "@/app/utils";
import { fetch } from "@/app/utils/stream";
export interface OpenAIListModelResponse {
object: string;
data: Array<{
id: string;
object: string;
root: string;
}>;
}
interface RequestInput {
messages: {
role: "system" | "user" | "assistant";
content: string | MultimodalContent[];
}[];
}
interface RequestParam {
result_format: string;
incremental_output?: boolean;
temperature: number;
repetition_penalty?: number;
top_p: number;
max_tokens?: number;
tools?: FunctionToolItem[];
enable_search?: boolean;
}
interface RequestPayload {
model: string;
input: RequestInput;
parameters: RequestParam;
}
export class QwenApi implements LLMApi {
path(path: string): string {
const accessStore = useAccessStore.getState();
let baseUrl = "";
if (accessStore.useCustomConfig) {
baseUrl = accessStore.alibabaUrl;
}
if (baseUrl.length === 0) {
const isApp = !!getClientConfig()?.isApp;
baseUrl = isApp ? ALIBABA_BASE_URL : ApiPath.Alibaba;
}
if (baseUrl.endsWith("/")) {
baseUrl = baseUrl.slice(0, baseUrl.length - 1);
}
if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Alibaba)) {
baseUrl = "https://" + baseUrl;
}
console.log("[Proxy Endpoint] ", baseUrl, path);
return [baseUrl, path].join("/");
}
extractMessage(res: any) {
return res?.output?.choices?.at(0)?.message?.content ?? "";
}
async speech(options: SpeechOptions): Promise<ArrayBuffer> {
throw new Error("Method not implemented.");
}
async *streamSpeech(
options: SpeechOptions,
audioManager?: TTSPlayManager,
): AsyncGenerator<AudioBuffer> {
if (!options.input || !options.model) {
throw new Error("Missing required parameters: input and model");
}
const requestPayload = {
model: options.model,
input: {
text: options.input,
voice: options.voice,
},
speed: options.speed,
response_format: options.response_format,
};
const controller = new AbortController();
options.onController?.(controller);
if (audioManager) {
audioManager.setStreamController(controller);
}
try {
const speechPath = this.path(Alibaba.SpeechPath);
const speechPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: {
...getHeaders(),
"X-DashScope-SSE": "enable",
},
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
getTimeoutMSByModel(options.model),
);
const res = await fetch(speechPath, speechPayload);
clearTimeout(requestTimeoutId); // Clear timeout on successful connection
const reader = res.body!.getReader();
const decoder = new TextDecoder();
let buffer = "";
while (true) {
const { done, value } = await reader.read();
if (done) {
break;
}
buffer += decoder.decode(value, { stream: true });
const lines = buffer.split("\n");
buffer = lines.pop() || "";
for (const line of lines) {
const data = line.slice(5);
try {
if (line.startsWith("data:")) {
const json = JSON.parse(data);
if (json.output?.audio?.data) {
yield await audioManager!.pcmBase64ToAudioBuffer(
json.output.audio.data,
{ channels: 1, sampleRate: 24000, bitDepth: 16 },
);
}
}
} catch (parseError) {
console.warn(
"[StreamSpeech] Failed to parse SSE data:",
parseError,
);
continue;
}
}
}
reader.releaseLock();
} catch (e) {
// 如果是用户主动取消AbortError则不作为错误处理
if (e instanceof Error && e.name === "AbortError") {
console.log("[Request] Stream speech was aborted by user");
return; // 正常退出,不抛出错误
}
console.log("[Request] failed to make a speech request", e);
throw e;
} finally {
if (audioManager) {
audioManager.clearStreamController();
}
}
}
async chat(options: ChatOptions) {
const modelConfig = {
...useAppConfig.getState().modelConfig,
...useChatStore.getState().currentSession().mask.modelConfig,
...{
model: options.config.model,
},
};
const visionModel = isVisionModel(options.config.model);
const messages: ChatOptions["messages"] = [];
for (const v of options.messages) {
const content = (
visionModel
? await preProcessImageContentForAlibabaDashScope(v.content)
: v.role === "assistant"
? getMessageTextContentWithoutThinking(v)
: getMessageTextContent(v)
) as any;
messages.push({ role: v.role, content });
}
const shouldStream = !!options.config.stream;
const requestPayload: RequestPayload = {
model: modelConfig.model,
input: {
messages,
},
parameters: {
result_format: "message",
incremental_output: shouldStream,
temperature: modelConfig.temperature,
// max_tokens: modelConfig.max_tokens,
top_p: modelConfig.top_p === 1 ? 0.99 : modelConfig.top_p, // qwen top_p is should be < 1
enable_search: modelConfig.enableNetWork,
},
};
const controller = new AbortController();
options.onController?.(controller);
try {
const headers = {
...getHeaders(),
"X-DashScope-SSE": shouldStream ? "enable" : "disable",
};
const chatPath = this.path(Alibaba.ChatPath(modelConfig.model));
const chatPayload = {
method: "POST",
body: JSON.stringify(requestPayload),
signal: controller.signal,
headers: headers,
};
// make a fetch request
const requestTimeoutId = setTimeout(
() => controller.abort(),
getTimeoutMSByModel(options.config.model),
);
if (shouldStream) {
const [tools, funcs] = usePluginStore
.getState()
.getAsTools(
useChatStore.getState().currentSession().mask?.plugin || [],
);
// console.log("getAsTools", tools, funcs);
const _tools = tools as unknown as FunctionToolItem[];
if (_tools && _tools.length > 0) {
requestPayload.parameters.tools = _tools;
}
return streamWithThink(
chatPath,
requestPayload,
headers,
[],
funcs,
controller,
// parseSSE
(text: string, runTools: ChatMessageTool[]) => {
// console.log("parseSSE", text, runTools);
const json = JSON.parse(text);
const choices = json.output.choices as Array<{
message: {
content: string | null | MultimodalContentForAlibaba[];
tool_calls: ChatMessageTool[];
reasoning_content: string | null;
};
}>;
if (!choices?.length) return { isThinking: false, content: "" };
const tool_calls = choices[0]?.message?.tool_calls;
if (tool_calls?.length > 0) {
const index = tool_calls[0]?.index;
const id = tool_calls[0]?.id;
const args = tool_calls[0]?.function?.arguments;
if (id) {
runTools.push({
id,
type: tool_calls[0]?.type,
function: {
name: tool_calls[0]?.function?.name as string,
arguments: args,
},
});
} else {
// @ts-ignore
runTools[index]["function"]["arguments"] += args || "";
}
}
const reasoning = choices[0]?.message?.reasoning_content;
const content = choices[0]?.message?.content;
// Skip if both content and reasoning_content are empty or null
if (
(!reasoning || reasoning.length === 0) &&
(!content || content.length === 0)
) {
return {
isThinking: false,
content: "",
};
}
if (reasoning && reasoning.length > 0) {
return {
isThinking: true,
content: reasoning,
};
} else if (content && content.length > 0) {
return {
isThinking: false,
content: Array.isArray(content)
? content.map((item) => item.text).join(",")
: content,
};
}
return {
isThinking: false,
content: "",
};
},
// processToolMessage, include tool_calls message and tool call results
(
requestPayload: RequestPayload,
toolCallMessage: any,
toolCallResult: any[],
) => {
requestPayload?.input?.messages?.splice(
requestPayload?.input?.messages?.length,
0,
toolCallMessage,
...toolCallResult,
);
},
options,
);
} else {
const res = await fetch(chatPath, chatPayload);
clearTimeout(requestTimeoutId);
const resJson = await res.json();
const message = this.extractMessage(resJson);
options.onFinish(message, res);
}
} catch (e) {
console.log("[Request] failed to make a chat request", e);
options.onError?.(e as Error);
}
}
async usage() {
return {
used: 0,
total: 0,
};
}
async models(): Promise<LLMModel[]> {
return [];
}
}
export { Alibaba };