mirror of
				https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web.git
				synced 2025-11-04 16:23:41 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			278 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
"use client";
 | 
						|
import { ApiPath, Alibaba, ALIBABA_BASE_URL } from "@/app/constant";
 | 
						|
import {
 | 
						|
  useAccessStore,
 | 
						|
  useAppConfig,
 | 
						|
  useChatStore,
 | 
						|
  ChatMessageTool,
 | 
						|
  usePluginStore,
 | 
						|
} from "@/app/store";
 | 
						|
import {
 | 
						|
  preProcessImageContentForAlibabaDashScope,
 | 
						|
  streamWithThink,
 | 
						|
} from "@/app/utils/chat";
 | 
						|
import {
 | 
						|
  ChatOptions,
 | 
						|
  getHeaders,
 | 
						|
  LLMApi,
 | 
						|
  LLMModel,
 | 
						|
  SpeechOptions,
 | 
						|
  MultimodalContent,
 | 
						|
  MultimodalContentForAlibaba,
 | 
						|
} from "../api";
 | 
						|
import { getClientConfig } from "@/app/config/client";
 | 
						|
import {
 | 
						|
  getMessageTextContent,
 | 
						|
  getMessageTextContentWithoutThinking,
 | 
						|
  getTimeoutMSByModel,
 | 
						|
  isVisionModel,
 | 
						|
} from "@/app/utils";
 | 
						|
import { fetch } from "@/app/utils/stream";
 | 
						|
 | 
						|
export interface OpenAIListModelResponse {
 | 
						|
  object: string;
 | 
						|
  data: Array<{
 | 
						|
    id: string;
 | 
						|
    object: string;
 | 
						|
    root: string;
 | 
						|
  }>;
 | 
						|
}
 | 
						|
 | 
						|
interface RequestInput {
 | 
						|
  messages: {
 | 
						|
    role: "system" | "user" | "assistant";
 | 
						|
    content: string | MultimodalContent[];
 | 
						|
  }[];
 | 
						|
}
 | 
						|
interface RequestParam {
 | 
						|
  result_format: string;
 | 
						|
  incremental_output?: boolean;
 | 
						|
  temperature: number;
 | 
						|
  repetition_penalty?: number;
 | 
						|
  top_p: number;
 | 
						|
  max_tokens?: number;
 | 
						|
}
 | 
						|
interface RequestPayload {
 | 
						|
  model: string;
 | 
						|
  input: RequestInput;
 | 
						|
  parameters: RequestParam;
 | 
						|
}
 | 
						|
 | 
						|
export class QwenApi implements LLMApi {
 | 
						|
  path(path: string): string {
 | 
						|
    const accessStore = useAccessStore.getState();
 | 
						|
 | 
						|
    let baseUrl = "";
 | 
						|
 | 
						|
    if (accessStore.useCustomConfig) {
 | 
						|
      baseUrl = accessStore.alibabaUrl;
 | 
						|
    }
 | 
						|
 | 
						|
    if (baseUrl.length === 0) {
 | 
						|
      const isApp = !!getClientConfig()?.isApp;
 | 
						|
      baseUrl = isApp ? ALIBABA_BASE_URL : ApiPath.Alibaba;
 | 
						|
    }
 | 
						|
 | 
						|
    if (baseUrl.endsWith("/")) {
 | 
						|
      baseUrl = baseUrl.slice(0, baseUrl.length - 1);
 | 
						|
    }
 | 
						|
    if (!baseUrl.startsWith("http") && !baseUrl.startsWith(ApiPath.Alibaba)) {
 | 
						|
      baseUrl = "https://" + baseUrl;
 | 
						|
    }
 | 
						|
 | 
						|
    console.log("[Proxy Endpoint] ", baseUrl, path);
 | 
						|
 | 
						|
    return [baseUrl, path].join("/");
 | 
						|
  }
 | 
						|
 | 
						|
  extractMessage(res: any) {
 | 
						|
    return res?.output?.choices?.at(0)?.message?.content ?? "";
 | 
						|
  }
 | 
						|
 | 
						|
  speech(options: SpeechOptions): Promise<ArrayBuffer> {
 | 
						|
    throw new Error("Method not implemented.");
 | 
						|
  }
 | 
						|
 | 
						|
  async chat(options: ChatOptions) {
 | 
						|
    const modelConfig = {
 | 
						|
      ...useAppConfig.getState().modelConfig,
 | 
						|
      ...useChatStore.getState().currentSession().mask.modelConfig,
 | 
						|
      ...{
 | 
						|
        model: options.config.model,
 | 
						|
      },
 | 
						|
    };
 | 
						|
 | 
						|
    const visionModel = isVisionModel(options.config.model);
 | 
						|
 | 
						|
    const messages: ChatOptions["messages"] = [];
 | 
						|
    for (const v of options.messages) {
 | 
						|
      const content = (
 | 
						|
        visionModel
 | 
						|
          ? await preProcessImageContentForAlibabaDashScope(v.content)
 | 
						|
          : v.role === "assistant"
 | 
						|
          ? getMessageTextContentWithoutThinking(v)
 | 
						|
          : getMessageTextContent(v)
 | 
						|
      ) as any;
 | 
						|
 | 
						|
      messages.push({ role: v.role, content });
 | 
						|
    }
 | 
						|
 | 
						|
    const shouldStream = !!options.config.stream;
 | 
						|
    const requestPayload: RequestPayload = {
 | 
						|
      model: modelConfig.model,
 | 
						|
      input: {
 | 
						|
        messages,
 | 
						|
      },
 | 
						|
      parameters: {
 | 
						|
        result_format: "message",
 | 
						|
        incremental_output: shouldStream,
 | 
						|
        temperature: modelConfig.temperature,
 | 
						|
        // max_tokens: modelConfig.max_tokens,
 | 
						|
        top_p: modelConfig.top_p === 1 ? 0.99 : modelConfig.top_p, // qwen top_p is should be < 1
 | 
						|
      },
 | 
						|
    };
 | 
						|
 | 
						|
    const controller = new AbortController();
 | 
						|
    options.onController?.(controller);
 | 
						|
 | 
						|
    try {
 | 
						|
      const headers = {
 | 
						|
        ...getHeaders(),
 | 
						|
        "X-DashScope-SSE": shouldStream ? "enable" : "disable",
 | 
						|
      };
 | 
						|
 | 
						|
      const chatPath = this.path(Alibaba.ChatPath(modelConfig.model));
 | 
						|
      const chatPayload = {
 | 
						|
        method: "POST",
 | 
						|
        body: JSON.stringify(requestPayload),
 | 
						|
        signal: controller.signal,
 | 
						|
        headers: headers,
 | 
						|
      };
 | 
						|
 | 
						|
      // make a fetch request
 | 
						|
      const requestTimeoutId = setTimeout(
 | 
						|
        () => controller.abort(),
 | 
						|
        getTimeoutMSByModel(options.config.model),
 | 
						|
      );
 | 
						|
 | 
						|
      if (shouldStream) {
 | 
						|
        const [tools, funcs] = usePluginStore
 | 
						|
          .getState()
 | 
						|
          .getAsTools(
 | 
						|
            useChatStore.getState().currentSession().mask?.plugin || [],
 | 
						|
          );
 | 
						|
        return streamWithThink(
 | 
						|
          chatPath,
 | 
						|
          requestPayload,
 | 
						|
          headers,
 | 
						|
          tools as any,
 | 
						|
          funcs,
 | 
						|
          controller,
 | 
						|
          // parseSSE
 | 
						|
          (text: string, runTools: ChatMessageTool[]) => {
 | 
						|
            // console.log("parseSSE", text, runTools);
 | 
						|
            const json = JSON.parse(text);
 | 
						|
            const choices = json.output.choices as Array<{
 | 
						|
              message: {
 | 
						|
                content: string | null | MultimodalContentForAlibaba[];
 | 
						|
                tool_calls: ChatMessageTool[];
 | 
						|
                reasoning_content: string | null;
 | 
						|
              };
 | 
						|
            }>;
 | 
						|
 | 
						|
            if (!choices?.length) return { isThinking: false, content: "" };
 | 
						|
 | 
						|
            const tool_calls = choices[0]?.message?.tool_calls;
 | 
						|
            if (tool_calls?.length > 0) {
 | 
						|
              const index = tool_calls[0]?.index;
 | 
						|
              const id = tool_calls[0]?.id;
 | 
						|
              const args = tool_calls[0]?.function?.arguments;
 | 
						|
              if (id) {
 | 
						|
                runTools.push({
 | 
						|
                  id,
 | 
						|
                  type: tool_calls[0]?.type,
 | 
						|
                  function: {
 | 
						|
                    name: tool_calls[0]?.function?.name as string,
 | 
						|
                    arguments: args,
 | 
						|
                  },
 | 
						|
                });
 | 
						|
              } else {
 | 
						|
                // @ts-ignore
 | 
						|
                runTools[index]["function"]["arguments"] += args;
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            const reasoning = choices[0]?.message?.reasoning_content;
 | 
						|
            const content = choices[0]?.message?.content;
 | 
						|
 | 
						|
            // Skip if both content and reasoning_content are empty or null
 | 
						|
            if (
 | 
						|
              (!reasoning || reasoning.length === 0) &&
 | 
						|
              (!content || content.length === 0)
 | 
						|
            ) {
 | 
						|
              return {
 | 
						|
                isThinking: false,
 | 
						|
                content: "",
 | 
						|
              };
 | 
						|
            }
 | 
						|
 | 
						|
            if (reasoning && reasoning.length > 0) {
 | 
						|
              return {
 | 
						|
                isThinking: true,
 | 
						|
                content: reasoning,
 | 
						|
              };
 | 
						|
            } else if (content && content.length > 0) {
 | 
						|
              return {
 | 
						|
                isThinking: false,
 | 
						|
                content: Array.isArray(content)
 | 
						|
                  ? content.map((item) => item.text).join(",")
 | 
						|
                  : content,
 | 
						|
              };
 | 
						|
            }
 | 
						|
 | 
						|
            return {
 | 
						|
              isThinking: false,
 | 
						|
              content: "",
 | 
						|
            };
 | 
						|
          },
 | 
						|
          // processToolMessage, include tool_calls message and tool call results
 | 
						|
          (
 | 
						|
            requestPayload: RequestPayload,
 | 
						|
            toolCallMessage: any,
 | 
						|
            toolCallResult: any[],
 | 
						|
          ) => {
 | 
						|
            requestPayload?.input?.messages?.splice(
 | 
						|
              requestPayload?.input?.messages?.length,
 | 
						|
              0,
 | 
						|
              toolCallMessage,
 | 
						|
              ...toolCallResult,
 | 
						|
            );
 | 
						|
          },
 | 
						|
          options,
 | 
						|
        );
 | 
						|
      } else {
 | 
						|
        const res = await fetch(chatPath, chatPayload);
 | 
						|
        clearTimeout(requestTimeoutId);
 | 
						|
 | 
						|
        const resJson = await res.json();
 | 
						|
        const message = this.extractMessage(resJson);
 | 
						|
        options.onFinish(message, res);
 | 
						|
      }
 | 
						|
    } catch (e) {
 | 
						|
      console.log("[Request] failed to make a chat request", e);
 | 
						|
      options.onError?.(e as Error);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  async usage() {
 | 
						|
    return {
 | 
						|
      used: 0,
 | 
						|
      total: 0,
 | 
						|
    };
 | 
						|
  }
 | 
						|
 | 
						|
  async models(): Promise<LLMModel[]> {
 | 
						|
    return [];
 | 
						|
  }
 | 
						|
}
 | 
						|
export { Alibaba };
 |