This commit is contained in:
周伟
2022-05-11 18:46:27 +08:00
commit 387f48277a
8634 changed files with 2579564 additions and 0 deletions

View File

@@ -0,0 +1,862 @@
<!DOCTYPE html>
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
<link rel="icon" href="/static/favicon.png">
<title>16 常用的缓存组件Redis是如何运行的.md</title>
<!-- Spectre.css framework -->
<link rel="stylesheet" href="/static/index.css">
<!-- theme css & js -->
<meta name="generator" content="Hexo 4.2.0">
</head>
<body>
<div class="book-container">
<div class="book-sidebar">
<div class="book-brand">
<a href="/">
<img src="/static/favicon.png">
<span>技术文章摘抄</span>
</a>
</div>
<div class="book-menu uncollapsible">
<ul class="uncollapsible">
<li><a href="/" class="current-tab">首页</a></li>
</ul>
<ul class="uncollapsible">
<li><a href="../">上一级</a></li>
</ul>
<ul class="uncollapsible">
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/00 开篇寄语:缓存,你真的用对了吗?.md">00 开篇寄语:缓存,你真的用对了吗?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/01 业务数据访问性能太低怎么办?.md">01 业务数据访问性能太低怎么办?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/02 如何根据业务来选择缓存模式和组件?.md">02 如何根据业务来选择缓存模式和组件?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/03 设计缓存架构时需要考量哪些因素?.md">03 设计缓存架构时需要考量哪些因素?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/04 缓存失效、穿透和雪崩问题怎么处理?.md">04 缓存失效、穿透和雪崩问题怎么处理?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/05 缓存数据不一致和并发竞争怎么处理?.md">05 缓存数据不一致和并发竞争怎么处理?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/06 Hot Key和Big Key引发的问题怎么应对.md">06 Hot Key和Big Key引发的问题怎么应对.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/07 MC为何是应用最广泛的缓存组件.md">07 MC为何是应用最广泛的缓存组件.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/08 MC系统架构是如何布局的.md">08 MC系统架构是如何布局的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/09 MC是如何使用多线程和状态机来处理请求命令的.md">09 MC是如何使用多线程和状态机来处理请求命令的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/10 MC是怎么定位key的.md">10 MC是怎么定位key的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/11 MC如何淘汰冷key和失效key.md">11 MC如何淘汰冷key和失效key.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/12 为何MC能长期维持高性能读写.md">12 为何MC能长期维持高性能读写.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/13 如何完整学习MC协议及优化client访问.md">13 如何完整学习MC协议及优化client访问.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/14 大数据时代MC如何应对新的常见问题.md">14 大数据时代MC如何应对新的常见问题.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/15 如何深入理解、应用及扩展 Twemproxy.md">15 如何深入理解、应用及扩展 Twemproxy.md.html</a>
</li>
<li>
<a class="current-tab" href="/专栏/300分钟吃透分布式缓存-完/16 常用的缓存组件Redis是如何运行的.md">16 常用的缓存组件Redis是如何运行的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/17 如何理解、选择并使用Redis的核心数据类型.md">17 如何理解、选择并使用Redis的核心数据类型.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/18 Redis协议的请求和响应有哪些“套路”可循.md">18 Redis协议的请求和响应有哪些“套路”可循.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/19 Redis系统架构中各个处理模块是干什么的.md">19 Redis系统架构中各个处理模块是干什么的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/20 Redis如何处理文件事件和时间事件.md">20 Redis如何处理文件事件和时间事件.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/21 Redis读取请求数据后如何进行协议解析和处理.md">21 Redis读取请求数据后如何进行协议解析和处理.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/22 怎么认识和应用Redis内部数据结构.md">22 怎么认识和应用Redis内部数据结构.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/23 Redis是如何淘汰key的.md">23 Redis是如何淘汰key的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/24 Redis崩溃后如何进行数据恢复的.md">24 Redis崩溃后如何进行数据恢复的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/25 Redis是如何处理容易超时的系统调用的.md">25 Redis是如何处理容易超时的系统调用的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/26 如何大幅成倍提升Redis处理性能.md">26 如何大幅成倍提升Redis处理性能.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/27 Redis是如何进行主从复制的.md">27 Redis是如何进行主从复制的.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/28 如何构建一个高性能、易扩展的Redis集群.md">28 如何构建一个高性能、易扩展的Redis集群.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/29 从容应对亿级QPS访问Redis还缺少什么.md">29 从容应对亿级QPS访问Redis还缺少什么.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md">30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md">31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/32 一个典型的分布式缓存系统是什么样的?.md">32 一个典型的分布式缓存系统是什么样的?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/33 如何为秒杀系统设计缓存体系?.md">33 如何为秒杀系统设计缓存体系?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/34 如何为海量计数场景设计缓存体系?.md">34 如何为海量计数场景设计缓存体系?.md.html</a>
</li>
<li>
<a href="/专栏/300分钟吃透分布式缓存-完/35 如何为社交feed场景设计缓存体系.md">35 如何为社交feed场景设计缓存体系.md.html</a>
</li>
</ul>
</div>
</div>
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
<div class="sidebar-toggle-inner"></div>
</div>
<script>
function add_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.add('show')
}
function remove_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.remove('show')
}
function sidebar_toggle() {
let sidebar_toggle = document.querySelector('.sidebar-toggle')
let sidebar = document.querySelector('.book-sidebar')
let content = document.querySelector('.off-canvas-content')
if (sidebar_toggle.classList.contains('extend')) { // show
sidebar_toggle.classList.remove('extend')
sidebar.classList.remove('hide')
content.classList.remove('extend')
} else { // hide
sidebar_toggle.classList.add('extend')
sidebar.classList.add('hide')
content.classList.add('extend')
}
}
function open_sidebar() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.add('show')
overlay.classList.add('show')
}
function hide_canvas() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.remove('show')
overlay.classList.remove('show')
}
</script>
<div class="off-canvas-content">
<div class="columns">
<div class="column col-12 col-lg-12">
<div class="book-navbar">
<!-- For Responsive Layout -->
<header class="navbar">
<section class="navbar-section">
<a onclick="open_sidebar()">
<i class="icon icon-menu"></i>
</a>
</section>
</header>
</div>
<div class="book-content" style="max-width: 960px; margin: 0 auto;
overflow-x: auto;
overflow-y: hidden;">
<div class="book-post">
<p id="tip" align="center"></p>
<div><h1>16 常用的缓存组件Redis是如何运行的</h1>
<p>你好,我是你的缓存课老师陈波,欢迎进入第 16 课时“Redis 基本原理”的学习。</p>
<h6>Redis 基本原理</h6>
<h6>Redis 简介</h6>
<p>Redis 是一款基于 ANSI C 语言编写的BSD 许可的,日志型 key-value 存储组件,它的所有数据结构都存在内存中,可以用作缓存、数据库和消息中间件。</p>
<p>Redis 是 Remote dictionary server 即远程字典服务的缩写,一个 Redis 实例可以有多个存储数据的字典,客户端可以通过 select 来选择字典即 DB 进行数据存储。</p>
<h6>Redis 特性</h6>
<p>同为 key-value 存储组件Memcached 只能支持二进制字节块这一种数据类型。而 Redis 的数据类型却丰富的多,它具有 8 种核心数据类型每种数据类型都有一系列操作指令对应。Redis 性能很高,单线程压测可以达到 10~11w 的 QPS。</p>
<p>虽然 Redis 所有数据的读写操作都在内存中进行但也可以将所有数据进行落盘做持久化。Redis 提供了 2 种持久化方式。</p>
<ul>
<li>快照方式,将某时刻所有数据都写入硬盘的 RDB 文件;</li>
<li>追加文件方式,即将所有写命令都以追加的方式写入硬盘的 AOF 文件中。</li>
</ul>
<p>线上 Redis 一般会同时使用两种方式,通过开启 appendonly 及关联配置项,将写命令及时追加到 AOF 文件,同时在每日流量低峰时,通过 bgsave 保存当时所有内存数据快照。</p>
<p>对于互联网系统的线上流量,读操作远远大于写操作。以微博为例,读请求占总体流量的 90%左右。大量的读请求,通常会远超 Redis 的可承载范围。此时,可以使用 Redis 的复制特性,让一个 Redis 实例作为 master然后通过复制挂载多个不断同步更新的副本即多个 slave。通过读写分离把所有写操作落在 Redis 的 master所有读操作随机落在 Redis 的多个 slave 中,从而大幅提升 Redis 的读写能力。</p>
<p>Lua 是一个高效、简洁、易扩展的脚本语言可以方便的嵌入其他语言中使用。Redis 自 2.6 版本开始支持 Lua。通过支持 client 端自定义的 Lua 脚本Redis 可以减少网络开销,提升处理性能,还可以把脚本中的多个操作作为一个整体来操作,实现原子性更新。</p>
<p>Redis 还支持事务,在 multi 指令后,指定多个操作,然后通过 exec 指令一次性执行,中途如果出现异常,则不执行所有命令操作,否则,按顺序一次性执行所有操作,执行过程中不会执行任何其他指令。</p>
<p>Redis 还支持 Cluster 特性,可以通过自动或手动方式,将所有 key 按哈希分散到不同节点,在容量不足时,还可以通过 Redis 的迁移指令,把其中一部分 key 迁移到其他节点。</p>
<p><img src="assets/CgotOV2lPF-AZ1LCAAEXirWDhew753.png" alt="img" /></p>
<p>对于 Redis 的特性,可以通过这张思维导图,做个初步了解。在后面的课程中,我会逐一进行详细讲解。</p>
<p>作为缓存组件Redis 的最大优势是支持丰富的数据类型。目前Redis 支持 8 种核心数据类型,包括 string、list、set、sorted set、hash、bitmap、geo、hyperloglog。</p>
<p>Redis 的所有内存数据结构都存在全局的 dict 字典中dict 类似 Memcached 的 hashtable。Redis 的 dict 也有 2 个哈希表,插入新 key 时,一般用 0 号哈希表,随着 key 的插入或删除,当 0 号哈希表的 keys 数大于哈希表桶数,或 kyes 数小于哈希桶的 1/10 时,就对 hash 表进行扩缩。dict 中,哈希表解决冲突的方式,与 Memcached 相同,也是使用桶内单链表,来指向多个 hash 相同的 key/value 数据。</p>
<h6>Redis 高性能</h6>
<p>Redis 一般被看作单进程/单线程组件,因为 Redis 的网络 IO 和命令处理都在核心进程中由单线程处理。Redis 基于 Epoll 事件模型开发,可以进行非阻塞网络 IO同时由于单线程命令处理整个处理过程不存在竞争不需要加锁没有上下文切换开销所有数据操作都是在内存中操作所以 Redis 的性能很高,单个实例即可以达到 10w 级的 QPS。核心线程除了负责网络 IO 及命令处理外,还负责写数据到缓冲,以方便将最新写操作同步到 AOF、slave。</p>
<p>除了主进程Redis 还会 fork 一个子进程来进行重负荷任务的处理。Redis fork 子进程主要有 3 种场景。</p>
<ul>
<li>收到 bgrewriteaof 命令时Redis 调用 fork构建一个子进程子进程往临时 AOF文件中写入重建数据库状态的所有命令当写入完毕子进程则通知父进程父进程把新增的写操作也追加到临时 AOF 文件,然后将临时文件替换老的 AOF 文件,并重命名。</li>
<li>收到 bgsave 命令时Redis 构建子进程,子进程将内存中的所有数据通过快照做一次持久化落地,写入到 RDB 中。</li>
<li>当需要进行全量复制时master 也会启动一个子进程,子进程将数据库快照保存到 RDB 文件,在写完 RDB 快照文件后master 就会把 RDB 发给 slave同时将后续新的写指令都同步给 slave。</li>
</ul>
<p><img src="assets/CgotOV2lPF-AZtVrAABZ5Cio_aE709.png" alt="img" /></p>
<p>主进程中,除了主线程处理网络 IO 和命令操作外,还有 3 个辅助 BIO 线程。这 3 个 BIO 线程分别负责处理文件关闭、AOF 缓冲数据刷新到磁盘,以及清理对象这三个任务队列。</p>
<p>Redis 在启动时,会同时启动这三个 BIO 线程,然后 BIO 线程休眠等待任务。当需要执行相关类型的后台任务时,就会构建一个 bio_job 结构,记录任务参数,然后将 bio_job 追加到任务队列尾部。然后唤醒 BIO 线程,即可进行任务执行。</p>
<h6>Redis 持久化</h6>
<p>Redis 的持久化是通过 RDB 和 AOF 文件进行的。RDB 只记录某个时间点的快照,可以通过设置指定时间内修改 keys 数的阀值,超过则自动构建 RDB 内容快照不过线上运维一般会选择在业务低峰期定期进行。RDB 存储的是构建时刻的数据快照,内存数据一旦落地,不会理会后续的变更。而 AOF记录是构建整个数据库内容的命令它会随着新的写操作不断进行追加操作。由于不断追加AOF 会记录数据大量的中间状态AOF 文件会变得非常大,此时,可以通过 bgrewriteaof 指令,对 AOF 进行重写,只保留数据的最后内容,来大大缩减 AOF 的内容。</p>
<p><img src="assets/CgoB5l2lPF-AAIcAAAAhBE0bnp4350.png" alt="img" /></p>
<p>为了提升系统的可扩展性提升读操作的支撑能力Redis 支持 master-slave 的复制功能。当 Redis 的 slave 部署并设置完毕后slave 会和 master 建立连接,进行全量同步。</p>
<p>第一次建立连接,或者长时间断开连接后,缺失的指令超过 master 复制缓冲区的大小都需要先进行一次全量同步。全量同步时master 会启动一个子进程,将数据库快照保存到文件中,然后将这个快照文件发给 slave同时将快照之后的写指令也同步给 slave。</p>
<p>全量同步完成后,如果 slave 短时间中断,然后重连复制,缺少的写指令长度小于 master 的复制缓冲大小master 就会把 slave 缺失的内容全部发送给 slave进行增量复制。</p>
<p>Redis 的 master 可以挂载多个 slave同时 slave 还可以继续挂载 slave通过这种方式可以有效减轻 master 的压力,同时在 master 挂掉后,可以在 slave 通过 slaveof no one 指令,使当前 slave 停止与 master 的同步,转而成为新的 master。</p>
<h6>Redis 集群管理</h6>
<p>Redis 的集群管理有 3 种方式。</p>
<ul>
<li>client 分片访问client 对 key 做 hash然后按取模或一致性 hash把 key 的读写分散到不同的 Redis 实例上。</li>
<li>在 Redis 前加一个 proxy把路由策略、后端 Redis 状态维护的工作都放到 proxy 中进行client 直接访问 proxy后端 Redis 变更,只需修改 proxy 配置即可。</li>
<li>直接使用 Redis cluster。Redis 创建之初,使用方直接给 Redis 的节点分配 slot后续访问时对 key 做 hash 找到对应的 slot然后访问 slot 所在的 Redis 实例。在需要扩容缩容时,可以在线通过 cluster setslot 指令,以及 migrate 指令,将 slot 下所有 key 迁移到目标节点,即可实现扩缩容的目的。</li>
</ul>
<p>至此Redis 的基本原理就讲完了,相信你对 Redis 应该有了一个大概的了解。接下来,我将开始逐一深入分析 Redis 的各个技术细节。</p>
</div>
</div>
<div>
<div style="float: left">
<a href="/专栏/300分钟吃透分布式缓存-完/15 如何深入理解、应用及扩展 Twemproxy.md">上一页</a>
</div>
<div style="float: right">
<a href="/专栏/300分钟吃透分布式缓存-完/17 如何理解、选择并使用Redis的核心数据类型.md">下一页</a>
</div>
</div>
</div>
</div>
</div>
</div>
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
</div>
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70996e525f603d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
</body>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-NPSEEVD756');
var path = window.location.pathname
var cookie = getCookie("lastPath");
console.log(path)
if (path.replace("/", "") === "") {
if (cookie.replace("/", "") !== "") {
console.log(cookie)
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
}
} else {
setCookie("lastPath", path)
}
function setCookie(cname, cvalue) {
var d = new Date();
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
var expires = "expires=" + d.toGMTString();
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
}
function getCookie(cname) {
var name = cname + "=";
var ca = document.cookie.split(';');
for (var i = 0; i < ca.length; i++) {
var c = ca[i].trim();
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
}
return "";
}
</script>
</html>