mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-17 08:46:40 +08:00
563 lines
25 KiB
HTML
563 lines
25 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
||
<head>
|
||
|
||
<head>
|
||
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
|
||
<link rel="icon" href="/static/favicon.png">
|
||
|
||
<title>34 如何为海量计数场景设计缓存体系?.md.html</title>
|
||
|
||
<!-- Spectre.css framework -->
|
||
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
|
||
<!-- theme css & js -->
|
||
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
|
||
<div class="book-sidebar">
|
||
|
||
<div class="book-brand">
|
||
|
||
<a href="/">
|
||
|
||
<img src="/static/favicon.png">
|
||
|
||
<span>技术文章摘抄</span>
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div class="book-menu uncollapsible">
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="../">上一级</a></li>
|
||
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/00 开篇寄语:缓存,你真的用对了吗?.md.html">00 开篇寄语:缓存,你真的用对了吗?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/01 业务数据访问性能太低怎么办?.md.html">01 业务数据访问性能太低怎么办?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/02 如何根据业务来选择缓存模式和组件?.md.html">02 如何根据业务来选择缓存模式和组件?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/03 设计缓存架构时需要考量哪些因素?.md.html">03 设计缓存架构时需要考量哪些因素?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/04 缓存失效、穿透和雪崩问题怎么处理?.md.html">04 缓存失效、穿透和雪崩问题怎么处理?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/05 缓存数据不一致和并发竞争怎么处理?.md.html">05 缓存数据不一致和并发竞争怎么处理?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/06 Hot Key和Big Key引发的问题怎么应对?.md.html">06 Hot Key和Big Key引发的问题怎么应对?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/07 MC为何是应用最广泛的缓存组件?.md.html">07 MC为何是应用最广泛的缓存组件?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/08 MC系统架构是如何布局的?.md.html">08 MC系统架构是如何布局的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/09 MC是如何使用多线程和状态机来处理请求命令的?.md.html">09 MC是如何使用多线程和状态机来处理请求命令的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/10 MC是怎么定位key的.md.html">10 MC是怎么定位key的.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/11 MC如何淘汰冷key和失效key.md.html">11 MC如何淘汰冷key和失效key.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/12 为何MC能长期维持高性能读写?.md.html">12 为何MC能长期维持高性能读写?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/13 如何完整学习MC协议及优化client访问?.md.html">13 如何完整学习MC协议及优化client访问?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/14 大数据时代,MC如何应对新的常见问题?.md.html">14 大数据时代,MC如何应对新的常见问题?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/15 如何深入理解、应用及扩展 Twemproxy?.md.html">15 如何深入理解、应用及扩展 Twemproxy?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/16 常用的缓存组件Redis是如何运行的?.md.html">16 常用的缓存组件Redis是如何运行的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/17 如何理解、选择并使用Redis的核心数据类型?.md.html">17 如何理解、选择并使用Redis的核心数据类型?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/18 Redis协议的请求和响应有哪些“套路”可循?.md.html">18 Redis协议的请求和响应有哪些“套路”可循?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/19 Redis系统架构中各个处理模块是干什么的?.md.html">19 Redis系统架构中各个处理模块是干什么的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/20 Redis如何处理文件事件和时间事件?.md.html">20 Redis如何处理文件事件和时间事件?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/21 Redis读取请求数据后,如何进行协议解析和处理.md.html">21 Redis读取请求数据后,如何进行协议解析和处理.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/22 怎么认识和应用Redis内部数据结构?.md.html">22 怎么认识和应用Redis内部数据结构?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/23 Redis是如何淘汰key的?.md.html">23 Redis是如何淘汰key的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/24 Redis崩溃后,如何进行数据恢复的?.md.html">24 Redis崩溃后,如何进行数据恢复的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/25 Redis是如何处理容易超时的系统调用的?.md.html">25 Redis是如何处理容易超时的系统调用的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/26 如何大幅成倍提升Redis处理性能?.md.html">26 如何大幅成倍提升Redis处理性能?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/27 Redis是如何进行主从复制的?.md.html">27 Redis是如何进行主从复制的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/28 如何构建一个高性能、易扩展的Redis集群?.md.html">28 如何构建一个高性能、易扩展的Redis集群?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/29 从容应对亿级QPS访问,Redis还缺少什么?.md.html">29 从容应对亿级QPS访问,Redis还缺少什么?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html">30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html">31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/32 一个典型的分布式缓存系统是什么样的?.md.html">32 一个典型的分布式缓存系统是什么样的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/33 如何为秒杀系统设计缓存体系?.md.html">33 如何为秒杀系统设计缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
<a class="current-tab" href="/专栏/300分钟吃透分布式缓存-完/34 如何为海量计数场景设计缓存体系?.md.html">34 如何为海量计数场景设计缓存体系?.md.html</a>
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/35 如何为社交feed场景设计缓存体系?.md.html">35 如何为社交feed场景设计缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
</ul>
|
||
</div>
|
||
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
|
||
<div class="sidebar-toggle-inner"></div>
|
||
|
||
</div>
|
||
<script>
|
||
|
||
function add_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.add('show')
|
||
|
||
}
|
||
function remove_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.remove('show')
|
||
|
||
}
|
||
function sidebar_toggle() {
|
||
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let content = document.querySelector('.off-canvas-content')
|
||
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
|
||
sidebar_toggle.classList.remove('extend')
|
||
|
||
sidebar.classList.remove('hide')
|
||
|
||
content.classList.remove('extend')
|
||
|
||
} else { // hide
|
||
|
||
sidebar_toggle.classList.add('extend')
|
||
|
||
sidebar.classList.add('hide')
|
||
|
||
content.classList.add('extend')
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
function open_sidebar() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.add('show')
|
||
|
||
overlay.classList.add('show')
|
||
|
||
}
|
||
|
||
function hide_canvas() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.remove('show')
|
||
|
||
overlay.classList.remove('show')
|
||
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
|
||
<div class="columns">
|
||
|
||
<div class="column col-12 col-lg-12">
|
||
|
||
<div class="book-navbar">
|
||
|
||
<!-- For Responsive Layout -->
|
||
|
||
<header class="navbar">
|
||
|
||
<section class="navbar-section">
|
||
|
||
<a onclick="open_sidebar()">
|
||
|
||
<i class="icon icon-menu"></i>
|
||
|
||
</a>
|
||
|
||
</section>
|
||
|
||
</header>
|
||
|
||
</div>
|
||
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
|
||
overflow-x: auto;
|
||
|
||
overflow-y: hidden;">
|
||
|
||
<div class="book-post">
|
||
|
||
<p id="tip" align="center"></p>
|
||
|
||
<div><h1>34 如何为海量计数场景设计缓存体系?</h1>
|
||
|
||
<p>在上一课时我们讲解了如何为秒杀系统进行缓存设计,在本课时我们将具体讲解如何为海量计数场景设计缓存服务。</p>
|
||
|
||
<h2>计数常规方案</h2>
|
||
|
||
<p><img src="assets/CgpOIF4EfGeAMy7uAACOifnCjYI046.png" alt="img" /></p>
|
||
|
||
<p>计数服务在互联网系统中非常常见,用户的关注粉丝数、帖子数、评论数等都需要进行计数存储。计数的存储格式也很简单,key 一般是用户 uid 或者帖子 id 加上后缀,value 一般是 8 字节的 long 型整数。</p>
|
||
|
||
<p>最常见的计数方案是采用缓存 + DB 的存储方案。当计数变更时,先变更计数 DB,计数加 1,然后再变更计数缓存,修改计数存储的 Memcached 或 Redis。这种方案比较通用且成熟,但在高并发访问场景,支持不够友好。在互联网社交系统中,有些业务的计数变更特别频繁,比如微博 feed 的阅读数,计数的变更次数和访问次数相当,每秒十万到百万级以上的更新量,如果用 DB 存储,会给 DB 带来巨大的压力,DB 就会成为整个计数服务的瓶颈所在。即便采用聚合延迟更新 DB 的方案,由于总量特别大,同时请求均衡分散在大量不同的业务端,巨大的写压力仍然是 DB 的不可承受之重。因此这种方案只适合中小规模的计数服务使用。</p>
|
||
|
||
<p><img src="assets/Cgq2xl4EfKKATQvhAAB_y6G_3Y0242.png" alt="img" /></p>
|
||
|
||
<p>在 Redis 问世并越来越成熟后,很多互联网系统会直接把计数全部存储在 Redis 中。通过 hash 分拆的方式,可以大幅提升计数服务在 Redis 集群的写性能,通过主从复制,在 master 后挂载多个从库,利用读写分离,可以大幅提升计数服务在 Redis 集群的读性能。而且 Redis 有持久化机制,不会丢数据,在很多大中型互联网场景,这都是一个比较适合的计数服务方案。</p>
|
||
|
||
<p>在互联网移动社交领域,由于用户基数巨大,每日发表大量状态数据,且相互之间有大量的交互动作,从而产生了海量计数和超高并发访问,如果直接用 Redis 进行存储,会带来巨大的成本和性能问题。</p>
|
||
|
||
<h2>海量计数场景</h2>
|
||
|
||
<p>以微博为例,系统内有大量的待计数对象。如从用户维度,日活跃用户 2 亿+,月活跃用户接近 5 亿。从 Feed 维度,微博历史 Feed 有数千亿条,而且每日新增数亿条的新 Feed。这些用户和 Feed 不但需要进行计数,而且需要进行多个计数。比如,用户维度,每个用户需要记录关注数、粉丝数、发表 Feed 数等。而从 Feed 维度,每条 Feed 需要记录转发数、评论数、赞、阅读等计数。</p>
|
||
|
||
<p>而且,在微博业务场景下,每次请求都会请求多个对象的多个计数。比如查看用户时,除了获取该用户的基本信息,还需要同时获取用户的关注数、粉丝数、发表 Feed 数。获取微博列表时,除了获取 Feed 内容,还需要同时获取 Feed 的转发数、评论数、赞数,以及阅读数。因此,微博计数服务的总访问量特别大,很容易达到百万级以上的 QPS。</p>
|
||
|
||
<p>因此,在海量计数高并发访问场景,如果采用缓存 + DB 的架构,首先 DB 在计数更新就会存在瓶颈,其次,单个请求一次请求数十个计数,一旦缓存 miss,穿透到 DB,DB 的读也会成为瓶颈。因为 DB 能支撑的 TPS 不过 3000~6000 之间,远远无法满足高并发计数访问场景的需要。</p>
|
||
|
||
<p>采用 Redis 全量存储方案,通过分片和主从复制,读写性能不会成为主要问题,但容量成本却会带来巨大开销。</p>
|
||
|
||
<p>因为,一方面 Redis 作为通用型存储来存储计数,内存存储效率低。以存储一个 key 为 long 型 id、value 为 4 字节的计数为例,Redis 至少需要 65 个字节左右,不同版本略有差异。但这个计数理论只需要占用 12 个字节即可。内存有效负荷只有 12/65=18.5%。如果再考虑一个 long 型 id 需要存 4 个不同类型的 4 字节计数,内存有效负荷只有 (8+16)/(65*4)= 9.2%。</p>
|
||
|
||
<p>另一方面,Redis 所有数据均存在内存,单存储历史千亿级记录,单份数据拷贝需要 10T 以上,要考虑核心业务上 1 主 3 从,需要 40T 以上的内存,再考虑多 IDC 部署,轻松占用上百 T 内存。就按单机 100G 内存来算,计数服务就要占用上千台大内存服务器。存储成本太高。</p>
|
||
|
||
<h2>海量计数服务架构</h2>
|
||
|
||
<p><img src="assets/Cgq2xl4EfNaAVYSOAACwXN0Zx5E804.png" alt="img" /></p>
|
||
|
||
<p>为了解决海量计数的存储及访问的问题,微博基于 Redis 定制开发了计数服务系统,该计数服务兼容 Redis 协议,将所有数据分别存储在内存和磁盘 2 个区域。首先,内存会预分配 N 块大小相同的 Table 空间,线上一般每个 Table 占用 1G 字节,最大分配 10 个左右的 Table 空间。首先使用 Table0,当存储填充率超过阀值,就使用 Table1,依次类推。每个 Table 中,key 是微博 id,value 是自定义的多个计数。</p>
|
||
|
||
<p>微博的 id 按时间递增,因此每个内存 Table 只用存储一定范围内的 id 即可。内存 Table 预先按设置分配为相同 size 大小的 key-value 槽空间。每插入一个新 key,就占用一个槽空间,当槽位填充率超过阀值,就滚动使用下一个 Table,当所有预分配的 Table 使用完毕,还可以根据配置,继续从内存分配更多新的 Table 空间。当内存占用达到阀值,就会把内存中 id 范围最小的 Table 落盘到 SSD 磁盘。落盘的 Table 文件称为 DDB。每个内存 Table 对应落盘为 1 个 DDB 文件。</p>
|
||
|
||
<p>计数服务会将落盘 DDB 文件的索引记录在内存,这样当查询需要从内存穿透到磁盘时,可以直接定位到磁盘文件,加快查询速度。</p>
|
||
|
||
<p>计数服务可以设置 Schema 策略,使一个 key 的 value 对应存储多个计数。每个计数占用空间根据 Schema 确定,可以精确到 bit。key 中的各个计数,设置了最大存储空间,所以只能支持有限范围内的计数。如果计数超过设置的阀值,则需要将这个 key 从 Table 中删除,转储到 aux dict 辅助词典中。</p>
|
||
|
||
<p>同时每个 Table 负责一定范围的 id,由于微博 id 随时间增长,而非逐一递增,Table 滚动是按照填充率达到阀值来进行的。当系统发生异常时,或者不同区域网络长时间断开重连后,在老数据修复期间,可能在之前的 Table 中插入较多的计数 key。如果旧 Table 插入数据量过大,超过容量限制,或者持续搜索存储位置而不得,查找次数超过阀值,则将新 key 插入到 extend dict 扩展词典中。</p>
|
||
|
||
<p>微博中的 feed 一般具有明显的冷热区分,并且越新的 feed 越热,访问量越大,越久远的 feed 越冷。新的热 key 存放内存 Table,老的冷 key 随所在的 Table 被置换到 DDB 文件。当查询 DDB 文件中的冷 key 时,会采用多线程异步并行查询,基本不影响业务的正常访问。同时,这些冷 key 从 DDB 中查询后,会被存放到 LRU 中,从而方便后续的再次访问。</p>
|
||
|
||
<p>计数服务的内存数据快照仍然采用前面讲的 RDB + 滚动 AOF 策略。RDB 记录构建时刻对应的 AOF 文件 id 及 pos 位置。全量复制时,master 会将磁盘中的 DDB 文件,以及内存数据快照对应的 RDB 和 AOF 全部传送给 slave。</p>
|
||
|
||
<p>在之后的所有复制就是全增量复制,slave 在断开连接,再次重连 master 时,汇报自己同步的 AOF 文件 id 及位置,master 将对应文件位置之后的内容全部发送给 slave,即可完成同步。</p>
|
||
|
||
<p><img src="assets/CgpOIF4EfUeALwp6AACe1xvi1Sc311.png" alt="img" /></p>
|
||
|
||
<p>计数服务中的内存 Table 是一个一维开放数据,每个 key-value 按照 Schema 策略占用相同的内存。每个 key-value 内部,key 和多个计数紧凑部署。首先 8 字节放置 long 型 key,然后按Schema 设置依次存放各个计数。</p>
|
||
|
||
<p>key 在插入及查询时,流程如下。</p>
|
||
|
||
<p>首先根据所有 Table 的 id 范围,确定 key 所在的内存 Table。</p>
|
||
|
||
<p>然后再根据 double-hash 算法计算 hash,用 2 个 hash 函数分别计算出 2 个 hash 值,采用公示 h1+N*h2 来定位查找。</p>
|
||
|
||
<p>在对计数插入或变更时,如果查询位置为空,则立即作为新值插入 key/value,否则对比 key,如果 key 相同,则进行计数增减;如果 key 不同,则将 N 加 1,然后进入到下一个位置,继续进行前面的判断。如果查询的位置一直不为空,且 key 不同,则最多查询设置的阀值次数,如果仍然没查到,则不再进行查询。将该 key 记录到 extend dict 扩展词典中。</p>
|
||
|
||
<p>在对计数 key 查找时,如果查询的位置为空,说明 key 不存在,立即停止。如果 key 相同,返回计数,否则 N 加 1,继续向后查询,如果查询达到阀值次数,没有遇到空,且 key 不同,再查询 aux dict 辅助字典 和 extend dict 扩展字典,如果也没找到该 key,则说明该 key 不存在,即计数为 0。</p>
|
||
|
||
<h2>海量计数服务收益</h2>
|
||
|
||
<p>微博计数服务,多个计数按 Schema 进行紧凑存储,共享同一个 key,每个计数的 size 按 bit 设计大小,没有额外的指针开销,内存占用只有 Redis 的 10% 以下。同时,由于 key 的计数 size 固定,如果计数超过阀值,则独立存储 aux dict 辅助字典中。</p>
|
||
|
||
<p>同时由于一个 key 存储多个计数,同时这些计数一般都需要返回,这样一次查询即可同时获取多个计数,查询性能相比每个计数独立存储的方式提升 3~5 倍。</p>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div>
|
||
|
||
<div style="float: left">
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/33 如何为秒杀系统设计缓存体系?.md.html">上一页</a>
|
||
|
||
</div>
|
||
|
||
<div style="float: right">
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/35 如何为社交feed场景设计缓存体系?.md.html">下一页</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
|
||
</div>
|
||
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70996e7cde5e3d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
|
||
</body>
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
|
||
<script>
|
||
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
|
||
dataLayer.push(arguments);
|
||
|
||
}
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-NPSEEVD756');
|
||
|
||
var path = window.location.pathname
|
||
|
||
var cookie = getCookie("lastPath");
|
||
|
||
console.log(path)
|
||
|
||
if (path.replace("/", "") === "") {
|
||
|
||
if (cookie.replace("/", "") !== "") {
|
||
|
||
console.log(cookie)
|
||
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
setCookie("lastPath", path)
|
||
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
|
||
var d = new Date();
|
||
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
|
||
var expires = "expires=" + d.toGMTString();
|
||
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
|
||
}
|
||
function getCookie(cname) {
|
||
|
||
var name = cname + "=";
|
||
|
||
var ca = document.cookie.split(';');
|
||
|
||
for (var i = 0; i < ca.length; i++) {
|
||
|
||
var c = ca[i].trim();
|
||
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
|
||
}
|
||
|
||
return "";
|
||
|
||
}
|
||
</script>
|
||
</html>
|
||
|