mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 05:06:42 +08:00
365 lines
31 KiB
HTML
365 lines
31 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>34 UDP 协议:UDP 和 TCP 相比快在哪里?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/00 开篇词 为什么大厂面试必考操作系统?.md.html">00 开篇词 为什么大厂面试必考操作系统?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/00 课前必读 构建知识体系,可以这样做!.md.html">00 课前必读 构建知识体系,可以这样做!</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/01 计算机是什么:“如何把程序写好”这个问题是可计算的吗?.md.html">01 计算机是什么:“如何把程序写好”这个问题是可计算的吗?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/02 程序的执行:相比 32 位,64 位的优势是什么?(上).md.html">02 程序的执行:相比 32 位,64 位的优势是什么?(上)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/03 程序的执行:相比 32 位,64 位的优势是什么?(下).md.html">03 程序的执行:相比 32 位,64 位的优势是什么?(下)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/04 构造复杂的程序:将一个递归函数转成非递归函数的通用方法.md.html">04 构造复杂的程序:将一个递归函数转成非递归函数的通用方法</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/05 存储器分级:L1 Cache 比内存和 SSD 快多少倍?.md.html">05 存储器分级:L1 Cache 比内存和 SSD 快多少倍?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/05 (1) 加餐 练习题详解(一).md.html">05 (1) 加餐 练习题详解(一)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/06 目录结构和文件管理指令:rm -rf 指令的作用是?.md.html">06 目录结构和文件管理指令:rm -rf 指令的作用是?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/07 进程、重定向和管道指令:xargs 指令的作用是?.md.html">07 进程、重定向和管道指令:xargs 指令的作用是?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/08 用户和权限管理指令: 请简述 Linux 权限划分的原则?.md.html">08 用户和权限管理指令: 请简述 Linux 权限划分的原则?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/09 Linux 中的网络指令:如何查看一个域名有哪些 NS 记录?.md.html">09 Linux 中的网络指令:如何查看一个域名有哪些 NS 记录?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/10 软件的安装: 编译安装和包管理器安装有什么优势和劣势?.md.html">10 软件的安装: 编译安装和包管理器安装有什么优势和劣势?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/11 高级技巧之日志分析:利用 Linux 指令分析 Web 日志.md.html">11 高级技巧之日志分析:利用 Linux 指令分析 Web 日志</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/12 高级技巧之集群部署:利用 Linux 指令同时在多台机器部署程序.md.html">12 高级技巧之集群部署:利用 Linux 指令同时在多台机器部署程序</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/12 (1)加餐 练习题详解(二).md.html">12 (1)加餐 练习题详解(二)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/13 操作系统内核:Linux 内核和 Windows 内核有什么区别?.md.html">13 操作系统内核:Linux 内核和 Windows 内核有什么区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/14 用户态和内核态:用户态线程和内核态线程有什么区别?.md.html">14 用户态和内核态:用户态线程和内核态线程有什么区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/15 中断和中断向量:Javajs 等语言为什么可以捕获到键盘输入?.md.html">15 中断和中断向量:Javajs 等语言为什么可以捕获到键盘输入?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/16 WinMacUnixLinux 的区别和联系:为什么 Debian 漏洞排名第一还这么多人用?.md.html">16 WinMacUnixLinux 的区别和联系:为什么 Debian 漏洞排名第一还这么多人用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/16 (1)加餐 练习题详解(三).md.html">16 (1)加餐 练习题详解(三)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/17 进程和线程:进程的开销比线程大在了哪里?.md.html">17 进程和线程:进程的开销比线程大在了哪里?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/18 锁、信号量和分布式锁:如何控制同一时间只有 2 个线程运行?.md.html">18 锁、信号量和分布式锁:如何控制同一时间只有 2 个线程运行?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/19 乐观锁、区块链:除了上锁还有哪些并发控制方法?.md.html">19 乐观锁、区块链:除了上锁还有哪些并发控制方法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/20 线程的调度:线程调度都有哪些方法?.md.html">20 线程的调度:线程调度都有哪些方法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/21 哲学家就餐问题:什么情况下会触发饥饿和死锁?.md.html">21 哲学家就餐问题:什么情况下会触发饥饿和死锁?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/22 进程间通信: 进程间通信都有哪些方法?.md.html">22 进程间通信: 进程间通信都有哪些方法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/23 分析服务的特性:我的服务应该开多少个进程、多少个线程?.md.html">23 分析服务的特性:我的服务应该开多少个进程、多少个线程?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/23 (1)加餐 练习题详解(四).md.html">23 (1)加餐 练习题详解(四)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/24 虚拟内存 :一个程序最多能使用多少内存?.md.html">24 虚拟内存 :一个程序最多能使用多少内存?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/25 内存管理单元: 什么情况下使用大内存分页?.md.html">25 内存管理单元: 什么情况下使用大内存分页?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/26 缓存置换算法: LRU 用什么数据结构实现更合理?.md.html">26 缓存置换算法: LRU 用什么数据结构实现更合理?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/27 内存回收上篇:如何解决内存的循环引用问题?.md.html">27 内存回收上篇:如何解决内存的循环引用问题?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/28 内存回收下篇:三色标记-清除算法是怎么回事?.md.html">28 内存回收下篇:三色标记-清除算法是怎么回事?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/28 (1)加餐 练习题详解(五).md.html">28 (1)加餐 练习题详解(五)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/29 Linux 下的各个目录有什么作用?.md.html">29 Linux 下的各个目录有什么作用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/30 文件系统的底层实现:FAT、NTFS 和 Ext3 有什么区别?.md.html">30 文件系统的底层实现:FAT、NTFS 和 Ext3 有什么区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/31 数据库文件系统实例:MySQL 中 B 树和 B+ 树有什么区别?.md.html">31 数据库文件系统实例:MySQL 中 B 树和 B+ 树有什么区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/32 HDFS 介绍:分布式文件系统是怎么回事?.md.html">32 HDFS 介绍:分布式文件系统是怎么回事?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/32 (1)加餐 练习题详解(六).md.html">32 (1)加餐 练习题详解(六)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/33 互联网协议群(TCPIP):多路复用是怎么回事?.md.html">33 互联网协议群(TCPIP):多路复用是怎么回事?</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/重学操作系统-完/34 UDP 协议:UDP 和 TCP 相比快在哪里?.md.html">34 UDP 协议:UDP 和 TCP 相比快在哪里?</a>
|
||
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/35 Linux 的 IO 模式:selectpollepoll 有什么区别?.md.html">35 Linux 的 IO 模式:selectpollepoll 有什么区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/36 公私钥体系和网络安全:什么是中间人攻击?.md.html">36 公私钥体系和网络安全:什么是中间人攻击?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/36 (1)加餐 练习题详解(七).md.html">36 (1)加餐 练习题详解(七)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/37 虚拟化技术介绍:VMware 和 Docker 的区别?.md.html">37 虚拟化技术介绍:VMware 和 Docker 的区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/38 容器编排技术:如何利用 K8s 和 Docker Swarm 管理微服务?.md.html">38 容器编排技术:如何利用 K8s 和 Docker Swarm 管理微服务?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/39 Linux 架构优秀在哪里.md.html">39 Linux 架构优秀在哪里</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/40 商业操作系统:电商操作系统是不是一个噱头?.md.html">40 商业操作系统:电商操作系统是不是一个噱头?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/40 (1)加餐 练习题详解(八).md.html">40 (1)加餐 练习题详解(八)</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/重学操作系统-完/41 结束语 论程序员的发展——信仰、选择和博弈.md.html">41 结束语 论程序员的发展——信仰、选择和博弈</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>34 UDP 协议:UDP 和 TCP 相比快在哪里?</h1>
|
||
<p>TCP 和 UDP 是目前使用最广泛的两个传输层协议,同时也是面试考察的重点内容。今天我会初步带你认识这两个协议,一起探寻它们之间最大的区别。</p>
|
||
<p>在开始本讲的重点内容前,我们先来说说 RFC 文档(Request For Comments,请求评论),互联网的很多基础建设都是以 RFC 的形式文档化,它给用户提供了阅读和学习的权限。在给大家准备《<strong>计算机网络</strong>》专栏的时候,我也经常查阅 RFC 文档。</p>
|
||
<p>如果你查阅 TCP 和 UDP 的 RFC 文档,会发现一件非常有趣的事情。TCP 协议的 RFC 很长,我足足读了好几天才把它们全部弄明白。UDP 的 RFC 非常短,只有短短的两页,一个小时就能读明白。这让我不禁感叹,如果能穿越到当时那个年代,我就去发明 UDP 协议,因为实在是太简单了。但即使是这个简单协议,也同样主宰着计算机网络协议的半壁江山。</p>
|
||
<p>那么这一讲我们就以 TCP 和 UDP 的区别为引,带你了解这两个在工作中使用频率极高、极为重要的传输层协议。</p>
|
||
<h3>可靠性</h3>
|
||
<p>首先我们比较一下这两个协议在<strong>可靠性(Reliablility)上的区别。如果一个网络协议是可靠的,那么它能够保证数据被无损</strong>地传送到目的地。当应用的设计者选择一个具有可靠性的协议时,通常意味着这个应用不能容忍数据在传输过程中被损坏。</p>
|
||
<p>如果你是初学者,可能会认为所有的应用都需要可靠性。其实不然,比如说一个视频直播服务。如果在传输过程当中,视频图像发生了一定的损坏,用户看到的只是某几个像素、颜色不准确了,或者某几帧视频丢失了——这对用户来说是可以容忍的。但在观看视频的时候,用户最怕的不是实时数据发生一定的损坏,而是吞吐量得不到保证。比如视频看到一半卡住了,要等很久,或者丢失了一大段视频数据,导致错过精彩的内容。</p>
|
||
<p><strong>TCP 协议,是一个支持可靠性的协议。UDP 协议,是一个不支持可靠性的协议</strong>。接下来我们讨论几个常见实现可靠性的手段。</p>
|
||
<h4>校验和(Checksum)</h4>
|
||
<p>首先我们来说说<strong>校验和</strong>。<strong>这是一种非常常见的可靠性检查手段</strong>。</p>
|
||
<p>尽管 UDP 不支持可靠性,但是像校验和(Checksum)这一类最基本的数据校验,它还是支持的。<strong>不支持可靠性,并不意味着完全放弃可靠性。TCP 和 UDP 都支持最基本的校验和算法</strong>。</p>
|
||
<p>下面我为你举例<strong>一种最简单的校验和算法:纵向冗余检查</strong>。伪代码如下:</p>
|
||
<pre><code>byte c = 0;
|
||
for(byte x in bytes) {
|
||
c = c xor x;
|
||
}
|
||
</code></pre>
|
||
<p><code>xor</code>是异或运算。上面的程序在计算字节数组 bytes 的校验和。<code>c</code>是最终的结果。你可以看到将所有<code>bytes</code>两两异或,最终的结果就是校验和。假设我们要传输 bytes,如果在传输过程中<code>bytes</code>发生了变化,校验和有<strong>很大概率</strong>也会跟着变化。当然也可能存在<code>bytes</code>发生变化,校验和没有变化的特例,不过校验和可以很大程度上帮助我们识别数据是否损坏了。</p>
|
||
<p><img src="assets/CgpVE1_-o5GADgRkAABcTgxXiyw544.png" alt="Lark20210113-153833.png" /></p>
|
||
<p>当要传输数据的时候,数据会被分片,我们把每个分片看作一个字节数组。然后在分片中,预留几个字节去存储校验和。校验和随着数据分片一起传输到目的地,目的地会用同样的算法再次计算校验和。如果二者校验和不一致,代表中途数据发生了损坏。</p>
|
||
<p><strong>对于 TCP 和 UDP,都实现了校验和算法,但二者的区别是,TCP 如果发现校验核对不上,也就是数据损坏,会主动丢失这个封包并且重发。而 UDP 什么都不会处理,UDP 把处理的权利交给使用它的程序员</strong>。</p>
|
||
<h4>请求/应答/连接模型</h4>
|
||
<p>另一种保证可靠性的方法是<strong>请求响应和连接的模型</strong>。TCP 实现了请求、响应和连接的模型,UDP 没有实现这个模型。</p>
|
||
<p>在通信当中,我们可以把通信双方抽象成两个人用电话通信一样,需要先建立联系(保持连接)。发起会话的人是发送请求,对方需要应答(或者称为响应)。会话双方保持一个连接,直到双方说再见。</p>
|
||
<p>在 TCP 协议当中,任何一方向另一方发送信息,另一方都需要给予一个应答。如果发送方在一定的时间内没有获得应答,发送方就会认为自己的信息没有到达目的地,中途发生了损坏或者丢失等,因此发送方会选择重发这条消息。</p>
|
||
<p>这样一个模式也造成了 TCP 协议的三次握手和四次挥手,下面我们一起来具体分析一下。</p>
|
||
<p><strong>1. TCP 的三次握手</strong></p>
|
||
<p>在 TCP 协议当中。我们假设 Alice 和 Bob 是两个通信进程。当 Alice 想要和 Bob 建立连接的时候,Alice 需要发送一个请求建立连接的消息给 Bob。这种请求建立连接的消息在 TCP 协议中称为<strong>同步</strong>(<strong>Synchronization, SYN</strong>)。而 Bob 收到 SYN,必须马上给 Alice 一个响应。这个响应在 TCP 协议当中称为<strong>响应</strong>(<strong>Acknowledgement,ACK</strong>)。请你务必记住这两个单词。不仅是 TCP 在用,其他协议也会复用这样的概念,来描述相同的事情。</p>
|
||
<p>当 Alice 给 Bob SYN,Bob 给 Alice ACK,这个时候,对 Alice 而言,连接就建立成功了。但是 TCP 是一个双工协议。所谓双工协议,代表数据可以双向传送。虽然对 Alice 而言,连接建立成功了。但是对 Bob 而言,连接还没有建立。为什么这么说呢?你可以这样思考,如果这个时候,Bob 马上给 Alice 发送信息,信息可能先于 Bob 的 ACK 到达 Alice,但这个时候 Alice 还不知道连接建立成功。 所以解决的办法就是 Bob 再给 Alice 发一次 SYN ,Alice 再给 Bob 一个 ACK。以上就是 TCP 的三次握手内容。</p>
|
||
<p>你可能会问,这明明是<strong>四次握手,哪里是三次握手</strong>呢?这是因为,Bob 给 Alice 的 ACK ,可以和 Bob 向 Alice 发起的 SYN 合并,称为一条 SYN-ACK 消息。TCP 协议以此来减少握手的次数,减少数据的传输,于是 TCP 就变成了三次握手。下图中绿色标签状是 Alice 和 Bob 的状态,完整的 TCP 三次握手的过程如下图所示:</p>
|
||
<p><img src="assets/CgpVE1_-o7OAHQP4AADkdEFtGfI902.png" alt="Lark20210113-153831.png" /></p>
|
||
<p><strong>2. TCP 的四次挥手</strong></p>
|
||
<p>四次挥手(TCP 断开连接)的原理类似。中断连接的请求我们称为 Finish(用 FIN 表示);和三次握手过程一样,需要分析成 4 步:</p>
|
||
<ul>
|
||
<li>第 1 步是 Alice 发送 FIN</li>
|
||
<li>第 2 步是 Bob 给 ACK</li>
|
||
<li>第 3 步是 Bob 发送 FIN</li>
|
||
<li>第 4 步是 Alice 给 ACK</li>
|
||
</ul>
|
||
<p>之所以是四次挥手,是因为第 2 步和 第 3 步在挥手的过程中不能合并为 FIN-ACK。原因是在挥手的过程中,Alice 和 Bob 都可能有未完成的工作。比如对 Bob 而言,可能还存在之前发给 Alice 但是还没有收到 ACK 的请求。因此,Bob 收到 Alice 的 FIN 后,就马上给 ACK。但是 Bob 会在自己准备妥当后,再发送 FIN 给 Alice。完整的过程如下图所示:</p>
|
||
<p><img src="assets/Ciqc1F_-o7uASykoAAD1Eo7HnP4749.png" alt="Lark20210113-153824.png" /></p>
|
||
<p><strong>3. 连接</strong></p>
|
||
<p>连接是一个虚拟概念,连接的目的是让连接的双方达成默契,倾尽资源,给对方最快的响应。经历了三次握手,Alice 和 Bob 之间就建立了连接。<strong>连接也是一个很好的编程模型。当连接不稳定的时候,可以中断连接后再重新连接。这种模式极大地增加了两个应用之间的数据传输的可靠性</strong>。</p>
|
||
<p>以上就是 TCP 中存在的,而 UDP 中没有的机制,你可以仔细琢磨琢磨。</p>
|
||
<h4>封包排序</h4>
|
||
<p><strong>可靠性有一个最基本的要求是数据有序发出、无序传输,并且有序组合。TCP 协议保证了这种可靠性,UDP 则没有保证</strong>。</p>
|
||
<p>在传输之前,数据被拆分成分块。在 TCP 中叫作一个<strong>TCP Segment</strong>。在 UDP 中叫作一个<strong>UDP Datagram</strong>。Datagram 单词的含义是数据传输的最小单位。在到达目的地之后,尽管所有的数据分块可能是乱序到达的,但为了保证可靠性,乱序到达的数据又需要被重新排序,恢复到原有数据的顺序。</p>
|
||
<p><strong>在这个过程当中,TCP 利用了滑动窗口、快速重传等算法,保证了数据的顺序。而 UDP,仅仅是为每个 Datagram 标注了序号,并没有帮助应用程序进行数据的排序</strong>,<strong>这也是 TCP 和 UDP 在保证可靠性上一个非常重要的区别。</strong></p>
|
||
<h3>使用场景</h3>
|
||
<p>上面的内容中,我们比较了 TCP 和 UDP 在可靠性上的区别,接下来我们看看两个协议的使用场景。</p>
|
||
<p><strong>我们先来看一道面试题:如果客户端和服务器之间的单程平均延迟是 30 毫秒,那么客户端 Ping 服务端需要多少毫秒</strong>?</p>
|
||
<p>【<strong>分析</strong>】这个问题最核心的点是需要思考 Ping 服务应该由 TCP 实现还是 UDP 实现?请你思考:Ping 需不需要保持连接呢?答案是不需要,Ping 服务器的时候把数据发送过去即可,并不需要特地建立一个连接。</p>
|
||
<p>请你再思考,Ping 需不需要保证可靠性呢?答案依然是不需要,如果发生了丢包, Ping 将丢包计入丢包率即可。所以从这个角度来看,Ping 使用 UDP 即可。</p>
|
||
<p>所以这道面试题应该是 Round Trip 最快需要在 60 毫秒左右。一个来回的时间,我们也通常称为 Round Trip 时间。</p>
|
||
<p>通过分析上面的例子,我想告诉你,TCP 和 UDP 的使用场景是不同的。<strong>TCP 适用于需要可靠性,需要连接的场景</strong>。UDP 因为足够简单,只对数据进行简单加工处理,就调用底层的网络层(IP 协议)传输数据去了。<strong>因此 UDP 更适合对可靠性要求不高的场景</strong>。</p>
|
||
<p>另外很多需要定制化的场景,非常需要 UDP。以 HTTP 协议为例,在早期的 HTTP 协议的设计当中就选择了 TCP 协议。因为在 HTTP 的设计当中,请求和返回都是需要可靠性的。但是随着 HTTP 协议的发展,到了 HTTP 3.0 的时候,就开始基于 UDP 进行传输。这是因为,在 HTTP 3.0 协议当中,在 UDP 之上有另一个QUIC 协议在负责可靠性。UDP 足够简单,在其上构建自己的协议就很方便。</p>
|
||
<p><strong>你可以再思考一个问题:文件上传应该用 TCP 还是 UDP 呢</strong>?乍一看肯定是 TCP 协议,因为文件上传当然需要可靠性,防止数据损坏。但是如果你愿意在 UDP 上去实现一套专门上传文件的可靠性协议,性能是可以超越 TCP 协议的。因为你只需要解决文件上传一种需求,不用像 TCP 协议那样解决通用需求。</p>
|
||
<p>所以时至今日,到底什么情况应该用 TCP,什么情况用 UDP?这个问题边界的确在模糊化。<strong>总体来说,需要可靠性,且不希望花太多心思在网络协议的研发上,就使用 TCP 协议</strong>。</p>
|
||
<h3>总结</h3>
|
||
<p>最后我们再来总结一下,大而全的协议用起来舒服,比如 TCP;灵活的协议方便定制和扩展,比如 UDP。二者不分伯仲,各有千秋。</p>
|
||
<p>这一讲我们深入比较了 TCP 和 UDP 的可靠性及它们的使用场景。关于原理部分,比如具体 TCP 的滑动窗口算法、数据的切割算法、数据重传算法;TCP、UDP 的封包内部究竟有哪些字段,格式如何等。如果你感兴趣,可以来学习我将在拉勾教育推出的《<strong>计算机网络</strong>》专栏。</p>
|
||
<p><strong>那么通过这一讲的学习,你现在可以尝试来回答本讲关联的面试题目:UDP 比 TCP 快在哪里</strong>?</p>
|
||
<p>【<strong>解析</strong>】使用 UDP 传输数据,不用建立连接,数据直接丢过去即可。至于接收方,有没有在监听?会不会接收?那就是接收方的事情了。UDP 甚至不考虑数据的可靠性。至于发送双方会不会基于 UDP 再去定制研发可靠性协议,那就是开发者的事情了。所以 UDP 快在哪里?UDP 快在它足够简单。因为足够简单,所以 UDP 对计算性能、对网络占用都是比 TCP 少的。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/重学操作系统-完/33 互联网协议群(TCPIP):多路复用是怎么回事?.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/重学操作系统-完/35 Linux 的 IO 模式:selectpollepoll 有什么区别?.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997da33fc03cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|