mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-24 20:26:41 +08:00
461 lines
31 KiB
HTML
461 lines
31 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>41 如何设计更优的分布式锁?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/00 开篇词你为什么需要学习并发编程?.md.html">00 开篇词你为什么需要学习并发编程?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/01 如何制定性能调优标准?.md.html">01 如何制定性能调优标准?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/02 如何制定性能调优策略?.md.html">02 如何制定性能调优策略?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/03 字符串性能优化不容小觑,百M内存轻松存储几十G数据.md.html">03 字符串性能优化不容小觑,百M内存轻松存储几十G数据</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/04 慎重使用正则表达式.md.html">04 慎重使用正则表达式</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/05 ArrayList还是LinkedList?使用不当性能差千倍.md.html">05 ArrayList还是LinkedList?使用不当性能差千倍</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/06 Stream如何提高遍历集合效率?.md.html">06 Stream如何提高遍历集合效率?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/07 深入浅出HashMap的设计与优化.md.html">07 深入浅出HashMap的设计与优化</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/08 网络通信优化之IO模型:如何解决高并发下IO瓶颈?.md.html">08 网络通信优化之IO模型:如何解决高并发下IO瓶颈?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/09 网络通信优化之序列化:避免使用Java序列化.md.html">09 网络通信优化之序列化:避免使用Java序列化</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/10 网络通信优化之通信协议:如何优化RPC网络通信?.md.html">10 网络通信优化之通信协议:如何优化RPC网络通信?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/11 答疑课堂:深入了解NIO的优化实现原理.md.html">11 答疑课堂:深入了解NIO的优化实现原理</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/12 多线程之锁优化(上):深入了解Synchronized同步锁的优化方法.md.html">12 多线程之锁优化(上):深入了解Synchronized同步锁的优化方法</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/13 多线程之锁优化(中):深入了解Lock同步锁的优化方法.md.html">13 多线程之锁优化(中):深入了解Lock同步锁的优化方法</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/14 多线程之锁优化(下):使用乐观锁优化并行操作.md.html">14 多线程之锁优化(下):使用乐观锁优化并行操作</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/15 多线程调优(上):哪些操作导致了上下文切换?.md.html">15 多线程调优(上):哪些操作导致了上下文切换?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/16 多线程调优(下):如何优化多线程上下文切换?.md.html">16 多线程调优(下):如何优化多线程上下文切换?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/17 并发容器的使用:识别不同场景下最优容器.md.html">17 并发容器的使用:识别不同场景下最优容器</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/18 如何设置线程池大小?.md.html">18 如何设置线程池大小?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/19 如何用协程来优化多线程业务?.md.html">19 如何用协程来优化多线程业务?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/20 磨刀不误砍柴工:欲知JVM调优先了解JVM内存模型.md.html">20 磨刀不误砍柴工:欲知JVM调优先了解JVM内存模型</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/21 深入JVM即时编译器JIT,优化Java编译.md.html">21 深入JVM即时编译器JIT,优化Java编译</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/22 如何优化垃圾回收机制?.md.html">22 如何优化垃圾回收机制?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/23 如何优化JVM内存分配?.md.html">23 如何优化JVM内存分配?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/24 内存持续上升,我该如何排查问题?.md.html">24 内存持续上升,我该如何排查问题?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/25 答疑课堂:模块四热点问题解答.md.html">25 答疑课堂:模块四热点问题解答</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/26 单例模式:如何创建单一对象优化系统性能?.md.html">26 单例模式:如何创建单一对象优化系统性能?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/27 原型模式与享元模式:提升系统性能的利器.md.html">27 原型模式与享元模式:提升系统性能的利器</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/28 如何使用设计模式优化并发编程?.md.html">28 如何使用设计模式优化并发编程?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/29 生产者消费者模式:电商库存设计优化.md.html">29 生产者消费者模式:电商库存设计优化</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/30 装饰器模式:如何优化电商系统中复杂的商品价格策略?.md.html">30 装饰器模式:如何优化电商系统中复杂的商品价格策略?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/31 答疑课堂:模块五思考题集锦.md.html">31 答疑课堂:模块五思考题集锦</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/32 MySQL调优之SQL语句:如何写出高性能SQL语句?.md.html">32 MySQL调优之SQL语句:如何写出高性能SQL语句?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/33 MySQL调优之事务:高并发场景下的数据库事务调优.md.html">33 MySQL调优之事务:高并发场景下的数据库事务调优</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/34 MySQL调优之索引:索引的失效与优化.md.html">34 MySQL调优之索引:索引的失效与优化</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/35 记一次线上SQL死锁事故:如何避免死锁?.md.html">35 记一次线上SQL死锁事故:如何避免死锁?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/36 什么时候需要分表分库?.md.html">36 什么时候需要分表分库?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/37 电商系统表设计优化案例分析.md.html">37 电商系统表设计优化案例分析</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/38 数据库参数设置优化,失之毫厘差之千里.md.html">38 数据库参数设置优化,失之毫厘差之千里</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/39 答疑课堂:MySQL中InnoDB的知识点串讲.md.html">39 答疑课堂:MySQL中InnoDB的知识点串讲</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/Java并发编程实战/41 如何设计更优的分布式锁?.md.html">41 如何设计更优的分布式锁?</a>
|
||
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/42 电商系统的分布式事务调优.md.html">42 电商系统的分布式事务调优</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/43 如何使用缓存优化系统性能?.md.html">43 如何使用缓存优化系统性能?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/44 记一次双十一抢购性能瓶颈调优.md.html">44 记一次双十一抢购性能瓶颈调优</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/加餐 什么是数据的强、弱一致性?.md.html">加餐 什么是数据的强、弱一致性?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/加餐 推荐几款常用的性能测试工具.md.html">加餐 推荐几款常用的性能测试工具</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/答疑课堂:模块三热点问题解答.md.html">答疑课堂:模块三热点问题解答</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/Java并发编程实战/结束语 栉风沐雨,砥砺前行!.md.html">结束语 栉风沐雨,砥砺前行!</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>41 如何设计更优的分布式锁?</h1>
|
||
<p>你好,我是刘超。</p>
|
||
<p>从这一讲开始,我们就正式进入最后一个模块的学习了,综合性实战的内容来自我亲身经历过的一些案例,其中用到的知识点会相对综合,现在是时候跟我一起调动下前面所学了!</p>
|
||
<p>去年双十一,我们的游戏商城也搞了一波活动,那时候我就发现在数据库操作日志中,出现最多的一个异常就是 Interrupted Exception 了,几乎所有的异常都是来自一个校验订单幂等性的 SQL。</p>
|
||
<p>因为校验订单幂等性是提交订单业务中第一个操作数据库的,所以幂等性校验也就承受了比较大的请求量,再加上我们还是基于一个数据库表来实现幂等性校验的,所以出现了一些请求事务超时,事务被中断的情况。其实基于数据库实现的幂等性校验就是一种分布式锁的实现。</p>
|
||
<p>那什么是分布式锁呢,它又是用来解决哪些问题的呢?</p>
|
||
<p>在 JVM 中,在多线程并发的情况下,我们可以使用同步锁或 Lock 锁,保证在同一时间内,只能有一个线程修改共享变量或执行代码块。但现在我们的服务基本都是基于分布式集群来实现部署的,对于一些共享资源,例如我们之前讨论过的库存,在分布式环境下使用 Java 锁的方式就失去作用了。</p>
|
||
<p>这时,我们就需要实现分布式锁来保证共享资源的原子性。除此之外,分布式锁也经常用来避免分布式中的不同节点执行重复性的工作,例如一个定时发短信的任务,在分布式集群中,我们只需要保证一个服务节点发送短信即可,一定要避免多个节点重复发送短信给同一个用户。</p>
|
||
<p>因为数据库实现一个分布式锁比较简单易懂,直接基于数据库实现就行了,不需要再引入第三方中间件,所以这是很多分布式业务实现分布式锁的首选。但是数据库实现的分布式锁在一定程度上,存在性能瓶颈。</p>
|
||
<p>接下来我们一起了解下如何使用数据库实现分布式锁,其性能瓶颈到底在哪,有没有其它实现方式可以优化分布式锁。</p>
|
||
<h2>数据库实现分布式锁</h2>
|
||
<p>首先,我们应该创建一个锁表,通过创建和查询数据来保证一个数据的原子性:</p>
|
||
<pre><code>CREATE TABLE `order` (
|
||
`id` int(11) NOT NULL AUTO_INCREMENT,
|
||
`order_no` int(11) DEFAULT NULL,
|
||
`pay_money` decimal(10, 2) DEFAULT NULL,
|
||
`status` int(4) DEFAULT NULL,
|
||
`create_date` datetime(0) DEFAULT NULL,
|
||
`delete_flag` int(4) DEFAULT NULL,
|
||
PRIMARY KEY (`id`) USING BTREE,
|
||
INDEX `idx_status`(`status`) USING BTREE,
|
||
INDEX `idx_order`(`order_no`) USING BTREE
|
||
) ENGINE = InnoDB
|
||
</code></pre>
|
||
<p>其次,如果是校验订单的幂等性,就要先查询该记录是否存在数据库中,查询的时候要防止幻读,如果不存在,就插入到数据库,否则,放弃操作。</p>
|
||
<pre><code>select id from `order` where `order_no`= 'xxxx' for update
|
||
</code></pre>
|
||
<p>最后注意下,除了查询时防止幻读,我们还需要保证查询和插入是在同一个事务中,因此我们需要申明事务,具体的实现代码如下:</p>
|
||
<pre><code> @Transactional
|
||
public int addOrderRecord(Order order) {
|
||
if(orderDao.selectOrderRecord(order)==null){
|
||
int result = orderDao.addOrderRecord(order);
|
||
if(result>0){
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
</code></pre>
|
||
<p>到这,我们订单幂等性校验的分布式锁就实现了。我想你应该能发现为什么这种方式会存在性能瓶颈了。我们在[第 34 讲]中讲过,在 RR 事务级别,select 的 for update 操作是基于间隙锁 gap lock 实现的,这是一种悲观锁的实现方式,所以存在阻塞问题。</p>
|
||
<p>因此在高并发情况下,当有大量的请求进来时,大部分的请求都会进行排队等待。为了保证数据库的稳定性,事务的超时时间往往又设置得很小,所以就会出现大量事务被中断的情况。</p>
|
||
<p>除了阻塞等待之外,因为订单没有删除操作,所以这张锁表的数据将会逐渐累积,我们需要设置另外一个线程,隔一段时间就去删除该表中的过期订单,这就增加了业务的复杂度。</p>
|
||
<p>除了这种幂等性校验的分布式锁,有一些单纯基于数据库实现的分布式锁代码块或对象,是需要在锁释放时,删除或修改数据的。如果在获取锁之后,锁一直没有获得释放,即数据没有被删除或修改,这将会引发死锁问题。</p>
|
||
<h2>Zookeeper 实现分布式锁</h2>
|
||
<p>除了数据库实现分布式锁的方式以外,我们还可以基于 Zookeeper 实现。Zookeeper 是一种提供“分布式服务协调“的中心化服务,正是 Zookeeper 的以下两个特性,分布式应用程序才可以基于它实现分布式锁功能。</p>
|
||
<p>**顺序临时节点:**Zookeeper 提供一个多层级的节点命名空间(节点称为 Znode),每个节点都用一个以斜杠(/)分隔的路径来表示,而且每个节点都有父节点(根节点除外),非常类似于文件系统。</p>
|
||
<p>节点类型可以分为持久节点(PERSISTENT )、临时节点(EPHEMERAL),每个节点还能被标记为有序性(SEQUENTIAL),一旦节点被标记为有序性,那么整个节点就具有顺序自增的特点。一般我们可以组合这几类节点来创建我们所需要的节点,例如,创建一个持久节点作为父节点,在父节点下面创建临时节点,并标记该临时节点为有序性。</p>
|
||
<p>**Watch 机制:**Zookeeper 还提供了另外一个重要的特性,Watcher(事件监听器)。ZooKeeper 允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知给用户。</p>
|
||
<p>我们熟悉了 Zookeeper 的这两个特性之后,就可以看看 Zookeeper 是如何实现分布式锁的了。</p>
|
||
<p>首先,我们需要建立一个父节点,节点类型为持久节点(PERSISTENT) ,每当需要访问共享资源时,就会在父节点下建立相应的顺序子节点,节点类型为临时节点(EPHEMERAL),且标记为有序性(SEQUENTIAL),并且以临时节点名称 + 父节点名称 + 顺序号组成特定的名字。</p>
|
||
<p>在建立子节点后,对父节点下面的所有以临时节点名称 name 开头的子节点进行排序,判断刚刚建立的子节点顺序号是否是最小的节点,如果是最小节点,则获得锁。</p>
|
||
<p>如果不是最小节点,则阻塞等待锁,并且获得该节点的上一顺序节点,为其注册监听事件,等待节点对应的操作获得锁。</p>
|
||
<p>当调用完共享资源后,删除该节点,关闭 zk,进而可以触发监听事件,释放该锁。</p>
|
||
<p><img src="assets/1c2df592672c78fd5d006cd23eb11f28.jpg" alt="img" /></p>
|
||
<p>以上实现的分布式锁是严格按照顺序访问的并发锁。一般我们还可以直接引用 Curator 框架来实现 Zookeeper 分布式锁,代码如下:</p>
|
||
<pre><code>InterProcessMutex lock = new InterProcessMutex(client, lockPath);
|
||
if ( lock.acquire(maxWait, waitUnit) )
|
||
{
|
||
try
|
||
{
|
||
// do some work inside of the critical section here
|
||
}
|
||
finally
|
||
{
|
||
lock.release();
|
||
}
|
||
}
|
||
</code></pre>
|
||
<p>Zookeeper 实现的分布式锁,例如相对数据库实现,有很多优点。Zookeeper 是集群实现,可以避免单点问题,且能保证每次操作都可以有效地释放锁,这是因为一旦应用服务挂掉了,临时节点会因为 session 连接断开而自动删除掉。</p>
|
||
<p>由于频繁地创建和删除结点,加上大量的 Watch 事件,对 Zookeeper 集群来说,压力非常大。且从性能上来说,其与接下来我要讲的 Redis 实现的分布式锁相比,还是存在一定的差距。</p>
|
||
<h2>Redis 实现分布式锁</h2>
|
||
<p>相对于前两种实现方式,基于 Redis 实现的分布式锁是最为复杂的,但性能是最佳的。</p>
|
||
<p>大部分开发人员利用 Redis 实现分布式锁的方式,都是使用 SETNX+EXPIRE 组合来实现,在 Redis 2.6.12 版本之前,具体实现代码如下:</p>
|
||
<pre><code>public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
|
||
|
||
Long result = jedis.setnx(lockKey, requestId);// 设置锁
|
||
if (result == 1) {// 获取锁成功
|
||
// 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
|
||
jedis.expire(lockKey, expireTime);// 通过过期时间删除锁
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
</code></pre>
|
||
<p>这种方式实现的分布式锁,是通过 setnx() 方法设置锁,如果 lockKey 存在,则返回失败,否则返回成功。设置成功之后,为了能在完成同步代码之后成功释放锁,方法中还需要使用 expire() 方法给 lockKey 值设置一个过期时间,确认 key 值删除,避免出现锁无法释放,导致下一个线程无法获取到锁,即死锁问题。</p>
|
||
<p>如果程序在设置过期时间之前、设置锁之后出现崩溃,此时如果 lockKey 没有设置过期时间,将会出现死锁问题。</p>
|
||
<p>在 Redis 2.6.12 版本后 SETNX 增加了过期时间参数:</p>
|
||
<pre><code> private static final String LOCK_SUCCESS = "OK";
|
||
private static final String SET_IF_NOT_EXIST = "NX";
|
||
private static final String SET_WITH_EXPIRE_TIME = "PX";
|
||
|
||
/**
|
||
* 尝试获取分布式锁
|
||
* @param jedis Redis 客户端
|
||
* @param lockKey 锁
|
||
* @param requestId 请求标识
|
||
* @param expireTime 超期时间
|
||
* @return 是否获取成功
|
||
*/
|
||
public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
|
||
|
||
String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
|
||
|
||
if (LOCK_SUCCESS.equals(result)) {
|
||
return true;
|
||
}
|
||
return false;
|
||
|
||
}
|
||
</code></pre>
|
||
<p>我们也可以通过 Lua 脚本来实现锁的设置和过期时间的原子性,再通过 jedis.eval() 方法运行该脚本:</p>
|
||
<pre><code> // 加锁脚本
|
||
private static final String SCRIPT_LOCK = "if redis.call('setnx', KEYS[1], ARGV[1]) == 1 then redis.call('pexpire', KEYS[1], ARGV[2]) return 1 else return 0 end";
|
||
// 解锁脚本
|
||
private static final String SCRIPT_UNLOCK = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
|
||
</code></pre>
|
||
<p>虽然 SETNX 方法保证了设置锁和过期时间的原子性,但如果我们设置的过期时间比较短,而执行业务时间比较长,就会存在锁代码块失效的问题。我们需要将过期时间设置得足够长,来保证以上问题不会出现。</p>
|
||
<p>这个方案是目前最优的分布式锁方案,但如果是在 Redis 集群环境下,依然存在问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Master 节点获取到锁后,在没有同步到其它节点时,Master 节点崩溃了,此时新的 Master 节点依然可以获取锁,所以多个应用服务可以同时获取到锁。</p>
|
||
<h3>Redlock 算法</h3>
|
||
<p>Redisson 由 Redis 官方推出,它是一个在 Redis 的基础上实现的 Java 驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的 Java 常用对象,还提供了许多分布式服务。Redisson 是基于 netty 通信框架实现的,所以支持非阻塞通信,性能相对于我们熟悉的 Jedis 会好一些。</p>
|
||
<p>Redisson 中实现了 Redis 分布式锁,且支持单点模式和集群模式。在集群模式下,Redisson 使用了 Redlock 算法,避免在 Master 节点崩溃切换到另外一个 Master 时,多个应用同时获得锁。我们可以通过一个应用服务获取分布式锁的流程,了解下 Redlock 算法的实现:</p>
|
||
<p>在不同的节点上使用单个实例获取锁的方式去获得锁,且每次获取锁都有超时时间,如果请求超时,则认为该节点不可用。当应用服务成功获取锁的 Redis 节点超过半数(N/2+1,N 为节点数) 时,并且获取锁消耗的实际时间不超过锁的过期时间,则获取锁成功。</p>
|
||
<p>一旦获取锁成功,就会重新计算释放锁的时间,该时间是由原来释放锁的时间减去获取锁所消耗的时间;而如果获取锁失败,客户端依然会释放获取锁成功的节点。</p>
|
||
<p>具体的代码实现如下:</p>
|
||
<ol>
|
||
<li>首先引入 jar 包:</li>
|
||
</ol>
|
||
<pre><code><dependency>
|
||
<groupId>org.redisson</groupId>
|
||
<artifactId>redisson</artifactId>
|
||
<version>3.8.2</version>
|
||
</dependency>
|
||
</code></pre>
|
||
<ol>
|
||
<li>实现 Redisson 的配置文件:</li>
|
||
</ol>
|
||
<pre><code>@Bean
|
||
public RedissonClient redissonClient() {
|
||
Config config = new Config();
|
||
config.useClusterServers()
|
||
.setScanInterval(2000) // 集群状态扫描间隔时间,单位是毫秒
|
||
.addNodeAddress("redis://127.0.0.1:7000).setPassword("1")
|
||
.addNodeAddress("redis://127.0.0.1:7001").setPassword("1")
|
||
.addNodeAddress("redis://127.0.0.1:7002")
|
||
.setPassword("1");
|
||
return Redisson.create(config);
|
||
}
|
||
</code></pre>
|
||
<ol>
|
||
<li>获取锁操作:</li>
|
||
</ol>
|
||
<pre><code>long waitTimeout = 10;
|
||
long leaseTime = 1;
|
||
RLock lock1 = redissonClient1.getLock("lock1");
|
||
RLock lock2 = redissonClient2.getLock("lock2");
|
||
RLock lock3 = redissonClient3.getLock("lock3");
|
||
|
||
RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
|
||
// 同时加锁:lock1 lock2 lock3
|
||
// 红锁在大部分节点上加锁成功就算成功,且设置总超时时间以及单个节点超时时间
|
||
redLock.trylock(waitTimeout,leaseTime,TimeUnit.SECONDS);
|
||
...
|
||
redLock.unlock();
|
||
</code></pre>
|
||
<h2>总结</h2>
|
||
<p>实现分布式锁的方式有很多,有最简单的数据库实现,还有 Zookeeper 多节点实现和缓存实现。我们可以分别对这三种实现方式进行性能压测,可以发现在同样的服务器配置下,Redis 的性能是最好的,Zookeeper 次之,数据库最差。</p>
|
||
<p>从实现方式和可靠性来说,Zookeeper 的实现方式简单,且基于分布式集群,可以避免单点问题,具有比较高的可靠性。因此,在对业务性能要求不是特别高的场景中,我建议使用 Zookeeper 实现的分布式锁。</p>
|
||
<h2>思考题</h2>
|
||
<p>我们知道 Redis 分布式锁在集群环境下会出现不同应用服务同时获得锁的可能,而 Redisson 中的 Redlock 算法很好地解决了这个问题。那 Redisson 实现的分布式锁是不是就一定不会出现同时获得锁的可能呢?</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/Java并发编程实战/39 答疑课堂:MySQL中InnoDB的知识点串讲.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/Java并发编程实战/42 电商系统的分布式事务调优.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"709971b799383d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|