learn.lianglianglee.com/专栏/Java并发编程实战/41 如何设计更优的分布式锁?.md.html
2022-08-14 03:40:33 +08:00

461 lines
31 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
<link rel="icon" href="/static/favicon.png">
<title>41 如何设计更优的分布式锁?.md.html</title>
<!-- Spectre.css framework -->
<link rel="stylesheet" href="/static/index.css">
<!-- theme css & js -->
<meta name="generator" content="Hexo 4.2.0">
</head>
<body>
<div class="book-container">
<div class="book-sidebar">
<div class="book-brand">
<a href="/">
<img src="/static/favicon.png">
<span>技术文章摘抄</span>
</a>
</div>
<div class="book-menu uncollapsible">
<ul class="uncollapsible">
<li><a href="/" class="current-tab">首页</a></li>
</ul>
<ul class="uncollapsible">
<li><a href="../">上一级</a></li>
</ul>
<ul class="uncollapsible">
<li>
<a href="/专栏/Java并发编程实战/00 开篇词你为什么需要学习并发编程?.md.html">00 开篇词你为什么需要学习并发编程?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/01 如何制定性能调优标准?.md.html">01 如何制定性能调优标准?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/02 如何制定性能调优策略?.md.html">02 如何制定性能调优策略?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/03 字符串性能优化不容小觑百M内存轻松存储几十G数据.md.html">03 字符串性能优化不容小觑百M内存轻松存储几十G数据</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/04 慎重使用正则表达式.md.html">04 慎重使用正则表达式</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/05 ArrayList还是LinkedList使用不当性能差千倍.md.html">05 ArrayList还是LinkedList使用不当性能差千倍</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/06 Stream如何提高遍历集合效率.md.html">06 Stream如何提高遍历集合效率</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/07 深入浅出HashMap的设计与优化.md.html">07 深入浅出HashMap的设计与优化</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/08 网络通信优化之IO模型如何解决高并发下IO瓶颈.md.html">08 网络通信优化之IO模型如何解决高并发下IO瓶颈</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/09 网络通信优化之序列化避免使用Java序列化.md.html">09 网络通信优化之序列化避免使用Java序列化</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/10 网络通信优化之通信协议如何优化RPC网络通信.md.html">10 网络通信优化之通信协议如何优化RPC网络通信</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/11 答疑课堂深入了解NIO的优化实现原理.md.html">11 答疑课堂深入了解NIO的优化实现原理</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/12 多线程之锁优化深入了解Synchronized同步锁的优化方法.md.html">12 多线程之锁优化深入了解Synchronized同步锁的优化方法</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/13 多线程之锁优化深入了解Lock同步锁的优化方法.md.html">13 多线程之锁优化深入了解Lock同步锁的优化方法</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/14 多线程之锁优化(下):使用乐观锁优化并行操作.md.html">14 多线程之锁优化(下):使用乐观锁优化并行操作</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/15 多线程调优(上):哪些操作导致了上下文切换?.md.html">15 多线程调优(上):哪些操作导致了上下文切换?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/16 多线程调优(下):如何优化多线程上下文切换?.md.html">16 多线程调优(下):如何优化多线程上下文切换?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/17 并发容器的使用:识别不同场景下最优容器.md.html">17 并发容器的使用:识别不同场景下最优容器</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/18 如何设置线程池大小?.md.html">18 如何设置线程池大小?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/19 如何用协程来优化多线程业务?.md.html">19 如何用协程来优化多线程业务?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/20 磨刀不误砍柴工欲知JVM调优先了解JVM内存模型.md.html">20 磨刀不误砍柴工欲知JVM调优先了解JVM内存模型</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/21 深入JVM即时编译器JIT优化Java编译.md.html">21 深入JVM即时编译器JIT优化Java编译</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/22 如何优化垃圾回收机制?.md.html">22 如何优化垃圾回收机制?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/23 如何优化JVM内存分配.md.html">23 如何优化JVM内存分配</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/24 内存持续上升,我该如何排查问题?.md.html">24 内存持续上升,我该如何排查问题?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/25 答疑课堂:模块四热点问题解答.md.html">25 答疑课堂:模块四热点问题解答</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/26 单例模式:如何创建单一对象优化系统性能?.md.html">26 单例模式:如何创建单一对象优化系统性能?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/27 原型模式与享元模式:提升系统性能的利器.md.html">27 原型模式与享元模式:提升系统性能的利器</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/28 如何使用设计模式优化并发编程?.md.html">28 如何使用设计模式优化并发编程?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/29 生产者消费者模式:电商库存设计优化.md.html">29 生产者消费者模式:电商库存设计优化</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/30 装饰器模式:如何优化电商系统中复杂的商品价格策略?.md.html">30 装饰器模式:如何优化电商系统中复杂的商品价格策略?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/31 答疑课堂:模块五思考题集锦.md.html">31 答疑课堂:模块五思考题集锦</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/32 MySQL调优之SQL语句如何写出高性能SQL语句.md.html">32 MySQL调优之SQL语句如何写出高性能SQL语句</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/33 MySQL调优之事务高并发场景下的数据库事务调优.md.html">33 MySQL调优之事务高并发场景下的数据库事务调优</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/34 MySQL调优之索引索引的失效与优化.md.html">34 MySQL调优之索引索引的失效与优化</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/35 记一次线上SQL死锁事故如何避免死锁.md.html">35 记一次线上SQL死锁事故如何避免死锁</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/36 什么时候需要分表分库?.md.html">36 什么时候需要分表分库?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/37 电商系统表设计优化案例分析.md.html">37 电商系统表设计优化案例分析</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/38 数据库参数设置优化,失之毫厘差之千里.md.html">38 数据库参数设置优化,失之毫厘差之千里</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/39 答疑课堂MySQL中InnoDB的知识点串讲.md.html">39 答疑课堂MySQL中InnoDB的知识点串讲</a>
</li>
<li>
<a class="current-tab" href="/专栏/Java并发编程实战/41 如何设计更优的分布式锁?.md.html">41 如何设计更优的分布式锁?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/42 电商系统的分布式事务调优.md.html">42 电商系统的分布式事务调优</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/43 如何使用缓存优化系统性能?.md.html">43 如何使用缓存优化系统性能?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/44 记一次双十一抢购性能瓶颈调优.md.html">44 记一次双十一抢购性能瓶颈调优</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/加餐 什么是数据的强、弱一致性?.md.html">加餐 什么是数据的强、弱一致性?</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/加餐 推荐几款常用的性能测试工具.md.html">加餐 推荐几款常用的性能测试工具</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/答疑课堂:模块三热点问题解答.md.html">答疑课堂:模块三热点问题解答</a>
</li>
<li>
<a href="/专栏/Java并发编程实战/结束语 栉风沐雨,砥砺前行!.md.html">结束语 栉风沐雨,砥砺前行!</a>
</li>
</ul>
</div>
</div>
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
<div class="sidebar-toggle-inner"></div>
</div>
<script>
function add_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.add('show')
}
function remove_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.remove('show')
}
function sidebar_toggle() {
let sidebar_toggle = document.querySelector('.sidebar-toggle')
let sidebar = document.querySelector('.book-sidebar')
let content = document.querySelector('.off-canvas-content')
if (sidebar_toggle.classList.contains('extend')) { // show
sidebar_toggle.classList.remove('extend')
sidebar.classList.remove('hide')
content.classList.remove('extend')
} else { // hide
sidebar_toggle.classList.add('extend')
sidebar.classList.add('hide')
content.classList.add('extend')
}
}
function open_sidebar() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.add('show')
overlay.classList.add('show')
}
function hide_canvas() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.remove('show')
overlay.classList.remove('show')
}
</script>
<div class="off-canvas-content">
<div class="columns">
<div class="column col-12 col-lg-12">
<div class="book-navbar">
<!-- For Responsive Layout -->
<header class="navbar">
<section class="navbar-section">
<a onclick="open_sidebar()">
<i class="icon icon-menu"></i>
</a>
</section>
</header>
</div>
<div class="book-content" style="max-width: 960px; margin: 0 auto;
overflow-x: auto;
overflow-y: hidden;">
<div class="book-post">
<p id="tip" align="center"></p>
<div><h1>41 如何设计更优的分布式锁?</h1>
<p>你好,我是刘超。</p>
<p>从这一讲开始,我们就正式进入最后一个模块的学习了,综合性实战的内容来自我亲身经历过的一些案例,其中用到的知识点会相对综合,现在是时候跟我一起调动下前面所学了!</p>
<p>去年双十一,我们的游戏商城也搞了一波活动,那时候我就发现在数据库操作日志中,出现最多的一个异常就是 Interrupted Exception 了,几乎所有的异常都是来自一个校验订单幂等性的 SQL。</p>
<p>因为校验订单幂等性是提交订单业务中第一个操作数据库的,所以幂等性校验也就承受了比较大的请求量,再加上我们还是基于一个数据库表来实现幂等性校验的,所以出现了一些请求事务超时,事务被中断的情况。其实基于数据库实现的幂等性校验就是一种分布式锁的实现。</p>
<p>那什么是分布式锁呢,它又是用来解决哪些问题的呢?</p>
<p>在 JVM 中,在多线程并发的情况下,我们可以使用同步锁或 Lock 锁,保证在同一时间内,只能有一个线程修改共享变量或执行代码块。但现在我们的服务基本都是基于分布式集群来实现部署的,对于一些共享资源,例如我们之前讨论过的库存,在分布式环境下使用 Java 锁的方式就失去作用了。</p>
<p>这时,我们就需要实现分布式锁来保证共享资源的原子性。除此之外,分布式锁也经常用来避免分布式中的不同节点执行重复性的工作,例如一个定时发短信的任务,在分布式集群中,我们只需要保证一个服务节点发送短信即可,一定要避免多个节点重复发送短信给同一个用户。</p>
<p>因为数据库实现一个分布式锁比较简单易懂,直接基于数据库实现就行了,不需要再引入第三方中间件,所以这是很多分布式业务实现分布式锁的首选。但是数据库实现的分布式锁在一定程度上,存在性能瓶颈。</p>
<p>接下来我们一起了解下如何使用数据库实现分布式锁,其性能瓶颈到底在哪,有没有其它实现方式可以优化分布式锁。</p>
<h2>数据库实现分布式锁</h2>
<p>首先,我们应该创建一个锁表,通过创建和查询数据来保证一个数据的原子性:</p>
<pre><code>CREATE TABLE `order` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`order_no` int(11) DEFAULT NULL,
`pay_money` decimal(10, 2) DEFAULT NULL,
`status` int(4) DEFAULT NULL,
`create_date` datetime(0) DEFAULT NULL,
`delete_flag` int(4) DEFAULT NULL,
PRIMARY KEY (`id`) USING BTREE,
INDEX `idx_status`(`status`) USING BTREE,
INDEX `idx_order`(`order_no`) USING BTREE
) ENGINE = InnoDB
</code></pre>
<p>其次,如果是校验订单的幂等性,就要先查询该记录是否存在数据库中,查询的时候要防止幻读,如果不存在,就插入到数据库,否则,放弃操作。</p>
<pre><code>select id from `order` where `order_no`= 'xxxx' for update
</code></pre>
<p>最后注意下,除了查询时防止幻读,我们还需要保证查询和插入是在同一个事务中,因此我们需要申明事务,具体的实现代码如下:</p>
<pre><code> @Transactional
public int addOrderRecord(Order order) {
if(orderDao.selectOrderRecord(order)==null){
int result = orderDao.addOrderRecord(order);
if(result&gt;0){
return 1;
}
}
return 0;
}
</code></pre>
<p>到这,我们订单幂等性校验的分布式锁就实现了。我想你应该能发现为什么这种方式会存在性能瓶颈了。我们在[第 34 讲]中讲过,在 RR 事务级别select 的 for update 操作是基于间隙锁 gap lock 实现的,这是一种悲观锁的实现方式,所以存在阻塞问题。</p>
<p>因此在高并发情况下,当有大量的请求进来时,大部分的请求都会进行排队等待。为了保证数据库的稳定性,事务的超时时间往往又设置得很小,所以就会出现大量事务被中断的情况。</p>
<p>除了阻塞等待之外,因为订单没有删除操作,所以这张锁表的数据将会逐渐累积,我们需要设置另外一个线程,隔一段时间就去删除该表中的过期订单,这就增加了业务的复杂度。</p>
<p>除了这种幂等性校验的分布式锁,有一些单纯基于数据库实现的分布式锁代码块或对象,是需要在锁释放时,删除或修改数据的。如果在获取锁之后,锁一直没有获得释放,即数据没有被删除或修改,这将会引发死锁问题。</p>
<h2>Zookeeper 实现分布式锁</h2>
<p>除了数据库实现分布式锁的方式以外,我们还可以基于 Zookeeper 实现。Zookeeper 是一种提供“分布式服务协调“的中心化服务,正是 Zookeeper 的以下两个特性,分布式应用程序才可以基于它实现分布式锁功能。</p>
<p>**顺序临时节点:**Zookeeper 提供一个多层级的节点命名空间(节点称为 Znode每个节点都用一个以斜杠/)分隔的路径来表示,而且每个节点都有父节点(根节点除外),非常类似于文件系统。</p>
<p>节点类型可以分为持久节点PERSISTENT 、临时节点EPHEMERAL每个节点还能被标记为有序性SEQUENTIAL一旦节点被标记为有序性那么整个节点就具有顺序自增的特点。一般我们可以组合这几类节点来创建我们所需要的节点例如创建一个持久节点作为父节点在父节点下面创建临时节点并标记该临时节点为有序性。</p>
<p>**Watch 机制:**Zookeeper 还提供了另外一个重要的特性Watcher事件监听器。ZooKeeper 允许用户在指定节点上注册一些 Watcher并且在一些特定事件触发的时候ZooKeeper 服务端会将事件通知给用户。</p>
<p>我们熟悉了 Zookeeper 的这两个特性之后,就可以看看 Zookeeper 是如何实现分布式锁的了。</p>
<p>首先我们需要建立一个父节点节点类型为持久节点PERSISTENT 每当需要访问共享资源时就会在父节点下建立相应的顺序子节点节点类型为临时节点EPHEMERAL且标记为有序性SEQUENTIAL并且以临时节点名称 + 父节点名称 + 顺序号组成特定的名字。</p>
<p>在建立子节点后,对父节点下面的所有以临时节点名称 name 开头的子节点进行排序,判断刚刚建立的子节点顺序号是否是最小的节点,如果是最小节点,则获得锁。</p>
<p>如果不是最小节点,则阻塞等待锁,并且获得该节点的上一顺序节点,为其注册监听事件,等待节点对应的操作获得锁。</p>
<p>当调用完共享资源后,删除该节点,关闭 zk进而可以触发监听事件释放该锁。</p>
<p><img src="assets/1c2df592672c78fd5d006cd23eb11f28.jpg" alt="img" /></p>
<p>以上实现的分布式锁是严格按照顺序访问的并发锁。一般我们还可以直接引用 Curator 框架来实现 Zookeeper 分布式锁,代码如下:</p>
<pre><code>InterProcessMutex lock = new InterProcessMutex(client, lockPath);
if ( lock.acquire(maxWait, waitUnit) )
{
try
{
// do some work inside of the critical section here
}
finally
{
lock.release();
}
}
</code></pre>
<p>Zookeeper 实现的分布式锁例如相对数据库实现有很多优点。Zookeeper 是集群实现,可以避免单点问题,且能保证每次操作都可以有效地释放锁,这是因为一旦应用服务挂掉了,临时节点会因为 session 连接断开而自动删除掉。</p>
<p>由于频繁地创建和删除结点,加上大量的 Watch 事件,对 Zookeeper 集群来说,压力非常大。且从性能上来说,其与接下来我要讲的 Redis 实现的分布式锁相比,还是存在一定的差距。</p>
<h2>Redis 实现分布式锁</h2>
<p>相对于前两种实现方式,基于 Redis 实现的分布式锁是最为复杂的,但性能是最佳的。</p>
<p>大部分开发人员利用 Redis 实现分布式锁的方式,都是使用 SETNX+EXPIRE 组合来实现,在 Redis 2.6.12 版本之前,具体实现代码如下:</p>
<pre><code>public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
Long result = jedis.setnx(lockKey, requestId);// 设置锁
if (result == 1) {// 获取锁成功
// 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
jedis.expire(lockKey, expireTime);// 通过过期时间删除锁
return true;
}
return false;
}
</code></pre>
<p>这种方式实现的分布式锁,是通过 setnx() 方法设置锁,如果 lockKey 存在,则返回失败,否则返回成功。设置成功之后,为了能在完成同步代码之后成功释放锁,方法中还需要使用 expire() 方法给 lockKey 值设置一个过期时间,确认 key 值删除,避免出现锁无法释放,导致下一个线程无法获取到锁,即死锁问题。</p>
<p>如果程序在设置过期时间之前、设置锁之后出现崩溃,此时如果 lockKey 没有设置过期时间,将会出现死锁问题。</p>
<p>在 Redis 2.6.12 版本后 SETNX 增加了过期时间参数:</p>
<pre><code> private static final String LOCK_SUCCESS = &quot;OK&quot;;
private static final String SET_IF_NOT_EXIST = &quot;NX&quot;;
private static final String SET_WITH_EXPIRE_TIME = &quot;PX&quot;;
/**
* 尝试获取分布式锁
* @param jedis Redis 客户端
* @param lockKey 锁
* @param requestId 请求标识
* @param expireTime 超期时间
* @return 是否获取成功
*/
public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
if (LOCK_SUCCESS.equals(result)) {
return true;
}
return false;
}
</code></pre>
<p>我们也可以通过 Lua 脚本来实现锁的设置和过期时间的原子性,再通过 jedis.eval() 方法运行该脚本:</p>
<pre><code> // 加锁脚本
private static final String SCRIPT_LOCK = &quot;if redis.call('setnx', KEYS[1], ARGV[1]) == 1 then redis.call('pexpire', KEYS[1], ARGV[2]) return 1 else return 0 end&quot;;
// 解锁脚本
private static final String SCRIPT_UNLOCK = &quot;if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end&quot;;
</code></pre>
<p>虽然 SETNX 方法保证了设置锁和过期时间的原子性,但如果我们设置的过期时间比较短,而执行业务时间比较长,就会存在锁代码块失效的问题。我们需要将过期时间设置得足够长,来保证以上问题不会出现。</p>
<p>这个方案是目前最优的分布式锁方案,但如果是在 Redis 集群环境下,依然存在问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Master 节点获取到锁后在没有同步到其它节点时Master 节点崩溃了,此时新的 Master 节点依然可以获取锁,所以多个应用服务可以同时获取到锁。</p>
<h3>Redlock 算法</h3>
<p>Redisson 由 Redis 官方推出,它是一个在 Redis 的基础上实现的 Java 驻内存数据网格In-Memory Data Grid。它不仅提供了一系列的分布式的 Java 常用对象还提供了许多分布式服务。Redisson 是基于 netty 通信框架实现的,所以支持非阻塞通信,性能相对于我们熟悉的 Jedis 会好一些。</p>
<p>Redisson 中实现了 Redis 分布式锁且支持单点模式和集群模式。在集群模式下Redisson 使用了 Redlock 算法,避免在 Master 节点崩溃切换到另外一个 Master 时,多个应用同时获得锁。我们可以通过一个应用服务获取分布式锁的流程,了解下 Redlock 算法的实现:</p>
<p>在不同的节点上使用单个实例获取锁的方式去获得锁,且每次获取锁都有超时时间,如果请求超时,则认为该节点不可用。当应用服务成功获取锁的 Redis 节点超过半数N/2+1N 为节点数) 时,并且获取锁消耗的实际时间不超过锁的过期时间,则获取锁成功。</p>
<p>一旦获取锁成功,就会重新计算释放锁的时间,该时间是由原来释放锁的时间减去获取锁所消耗的时间;而如果获取锁失败,客户端依然会释放获取锁成功的节点。</p>
<p>具体的代码实现如下:</p>
<ol>
<li>首先引入 jar 包:</li>
</ol>
<pre><code>&lt;dependency&gt;
&lt;groupId&gt;org.redisson&lt;/groupId&gt;
&lt;artifactId&gt;redisson&lt;/artifactId&gt;
&lt;version&gt;3.8.2&lt;/version&gt;
&lt;/dependency&gt;
</code></pre>
<ol>
<li>实现 Redisson 的配置文件:</li>
</ol>
<pre><code>@Bean
public RedissonClient redissonClient() {
Config config = new Config();
config.useClusterServers()
.setScanInterval(2000) // 集群状态扫描间隔时间,单位是毫秒
.addNodeAddress(&quot;redis://127.0.0.1:7000).setPassword(&quot;1&quot;)
.addNodeAddress(&quot;redis://127.0.0.1:7001&quot;).setPassword(&quot;1&quot;)
.addNodeAddress(&quot;redis://127.0.0.1:7002&quot;)
.setPassword(&quot;1&quot;);
return Redisson.create(config);
}
</code></pre>
<ol>
<li>获取锁操作:</li>
</ol>
<pre><code>long waitTimeout = 10;
long leaseTime = 1;
RLock lock1 = redissonClient1.getLock(&quot;lock1&quot;);
RLock lock2 = redissonClient2.getLock(&quot;lock2&quot;);
RLock lock3 = redissonClient3.getLock(&quot;lock3&quot;);
RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
// 同时加锁lock1 lock2 lock3
// 红锁在大部分节点上加锁成功就算成功,且设置总超时时间以及单个节点超时时间
redLock.trylock(waitTimeout,leaseTime,TimeUnit.SECONDS);
...
redLock.unlock();
</code></pre>
<h2>总结</h2>
<p>实现分布式锁的方式有很多,有最简单的数据库实现,还有 Zookeeper 多节点实现和缓存实现。我们可以分别对这三种实现方式进行性能压测可以发现在同样的服务器配置下Redis 的性能是最好的Zookeeper 次之,数据库最差。</p>
<p>从实现方式和可靠性来说Zookeeper 的实现方式简单,且基于分布式集群,可以避免单点问题,具有比较高的可靠性。因此,在对业务性能要求不是特别高的场景中,我建议使用 Zookeeper 实现的分布式锁。</p>
<h2>思考题</h2>
<p>我们知道 Redis 分布式锁在集群环境下会出现不同应用服务同时获得锁的可能,而 Redisson 中的 Redlock 算法很好地解决了这个问题。那 Redisson 实现的分布式锁是不是就一定不会出现同时获得锁的可能呢?</p>
</div>
</div>
<div>
<div style="float: left">
<a href="/专栏/Java并发编程实战/39 答疑课堂MySQL中InnoDB的知识点串讲.md.html">上一页</a>
</div>
<div style="float: right">
<a href="/专栏/Java并发编程实战/42 电商系统的分布式事务调优.md.html">下一页</a>
</div>
</div>
</div>
</div>
</div>
</div>
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
</div>
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"709971b799383d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
</body>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-NPSEEVD756');
var path = window.location.pathname
var cookie = getCookie("lastPath");
console.log(path)
if (path.replace("/", "") === "") {
if (cookie.replace("/", "") !== "") {
console.log(cookie)
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
}
} else {
setCookie("lastPath", path)
}
function setCookie(cname, cvalue) {
var d = new Date();
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
var expires = "expires=" + d.toGMTString();
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
}
function getCookie(cname) {
var name = cname + "=";
var ca = document.cookie.split(';');
for (var i = 0; i < ca.length; i++) {
var c = ca[i].trim();
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
}
return "";
}
</script>
</html>