mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 05:06:42 +08:00
355 lines
26 KiB
HTML
355 lines
26 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>01 如何证明分布式系统的 CAP 理论?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/00 开篇词:搭建分布式知识体系,挑战高薪 Offer.md.html">00 开篇词:搭建分布式知识体系,挑战高薪 Offer</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/分布式技术原理与实战45讲-完/01 如何证明分布式系统的 CAP 理论?.md.html">01 如何证明分布式系统的 CAP 理论?</a>
|
||
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/02 不同数据一致性模型有哪些应用?.md.html">02 不同数据一致性模型有哪些应用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/03 如何透彻理解 Paxos 算法?.md.html">03 如何透彻理解 Paxos 算法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/04 ZooKeeper 如何保证数据一致性?.md.html">04 ZooKeeper 如何保证数据一致性?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/05 共识问题:区块链如何确认记账权?.md.html">05 共识问题:区块链如何确认记账权?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/06 如何准备一线互联网公司面试?.md.html">06 如何准备一线互联网公司面试?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/07 分布式事务有哪些解决方案?.md.html">07 分布式事务有哪些解决方案?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/08 对比两阶段提交,三阶段协议有哪些改进?.md.html">08 对比两阶段提交,三阶段协议有哪些改进?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/09 MySQL 数据库如何实现 XA 规范?.md.html">09 MySQL 数据库如何实现 XA 规范?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/10 如何在业务中体现 TCC 事务模型?.md.html">10 如何在业务中体现 TCC 事务模型?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/11 分布式锁有哪些应用场景和实现?.md.html">11 分布式锁有哪些应用场景和实现?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/12 如何使用 Redis 快速实现分布式锁?.md.html">12 如何使用 Redis 快速实现分布式锁?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/13 分布式事务考点梳理 + 高频面试题.md.html">13 分布式事务考点梳理 + 高频面试题</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/14 如何理解 RPC 远程服务调用?.md.html">14 如何理解 RPC 远程服务调用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/15 为什么微服务需要 API 网关?.md.html">15 为什么微服务需要 API 网关?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/16 如何实现服务注册与发现?.md.html">16 如何实现服务注册与发现?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/17 如何实现分布式调用跟踪?.md.html">17 如何实现分布式调用跟踪?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/18 分布式下如何实现配置管理?.md.html">18 分布式下如何实现配置管理?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/19 容器化升级对服务有哪些影响?.md.html">19 容器化升级对服务有哪些影响?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/20 ServiceMesh:服务网格有哪些应用?.md.html">20 ServiceMesh:服务网格有哪些应用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/21 Dubbo vs Spring Cloud:两大技术栈如何选型?.md.html">21 Dubbo vs Spring Cloud:两大技术栈如何选型?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/22 分布式服务考点梳理 + 高频面试题.md.html">22 分布式服务考点梳理 + 高频面试题</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/23 读写分离如何在业务中落地?.md.html">23 读写分离如何在业务中落地?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/24 为什么需要分库分表,如何实现?.md.html">24 为什么需要分库分表,如何实现?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/25 存储拆分后,如何解决唯一主键问题?.md.html">25 存储拆分后,如何解决唯一主键问题?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/26 分库分表以后,如何实现扩容?.md.html">26 分库分表以后,如何实现扩容?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/27 NoSQL 数据库有哪些典型应用?.md.html">27 NoSQL 数据库有哪些典型应用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/28 ElasticSearch 是如何建立索引的?.md.html">28 ElasticSearch 是如何建立索引的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/29 分布式存储考点梳理 + 高频面试题.md.html">29 分布式存储考点梳理 + 高频面试题</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/30 消息队列有哪些应用场景?.md.html">30 消息队列有哪些应用场景?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/31 集群消费和广播消费有什么区别?.md.html">31 集群消费和广播消费有什么区别?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/32 业务上需要顺序消费,怎么保证时序性?.md.html">32 业务上需要顺序消费,怎么保证时序性?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/33 消息幂等:如何保证消息不被重复消费?.md.html">33 消息幂等:如何保证消息不被重复消费?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/34 高可用:如何实现消息队列的 HA?.md.html">34 高可用:如何实现消息队列的 HA?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/35 消息队列选型:Kafka 如何实现高性能?.md.html">35 消息队列选型:Kafka 如何实现高性能?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/36 消息队列选型:RocketMQ 适用哪些场景?.md.html">36 消息队列选型:RocketMQ 适用哪些场景?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/37 消息队列考点梳理 + 高频面试题.md.html">37 消息队列考点梳理 + 高频面试题</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/38 不止业务缓存,分布式系统中还有哪些缓存?.md.html">38 不止业务缓存,分布式系统中还有哪些缓存?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/39 如何避免缓存穿透、缓存击穿、缓存雪崩?.md.html">39 如何避免缓存穿透、缓存击穿、缓存雪崩?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/40 经典问题:先更新数据库,还是先更新缓存?.md.html">40 经典问题:先更新数据库,还是先更新缓存?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/41 失效策略:缓存过期都有哪些策略?.md.html">41 失效策略:缓存过期都有哪些策略?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/42 负载均衡:一致性哈希解决了哪些问题?.md.html">42 负载均衡:一致性哈希解决了哪些问题?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/43 缓存高可用:缓存如何保证高可用?.md.html">43 缓存高可用:缓存如何保证高可用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/44 分布式缓存考点梳理 + 高频面试题.md.html">44 分布式缓存考点梳理 + 高频面试题</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/45 从双十一看高可用的保障方式.md.html">45 从双十一看高可用的保障方式</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/46 高并发场景下如何实现系统限流?.md.html">46 高并发场景下如何实现系统限流?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/47 降级和熔断:如何增强服务稳定性?.md.html">47 降级和熔断:如何增强服务稳定性?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/48 如何选择适合业务的负载均衡策略?.md.html">48 如何选择适合业务的负载均衡策略?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/49 线上服务有哪些稳定性指标?.md.html">49 线上服务有哪些稳定性指标?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/50 分布式下有哪些好用的监控组件?.md.html">50 分布式下有哪些好用的监控组件?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/51 分布式下如何实现统一日志系统?.md.html">51 分布式下如何实现统一日志系统?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/52 分布式路漫漫,厚积薄发才是王道.md.html">52 分布式路漫漫,厚积薄发才是王道</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>01 如何证明分布式系统的 CAP 理论?</h1>
|
||
<p>本课时我们主要介绍分布式系统中最基础的 CAP 理论及其应用。
|
||
对于开发或设计分布式系统的架构师、工程师来说,CAP 是必须要掌握的基础理论,CAP 理论可以帮助架构师对系统设计中目标进行取舍,合理地规划系统拆分的维度。下面我们先讲讲分布式系统的特点。</p>
|
||
<h2>分布式系统的特点</h2>
|
||
<p>随着移动互联网的快速发展,互联网的用户数量越来越多,产生的数据规模也越来越大,对应用系统提出了更高的要求,我们的系统必须支持高并发访问和海量数据处理。
|
||
分布式系统技术就是用来解决集中式架构的性能瓶颈问题,来适应快速发展的业务规模,一般来说,分布式系统是建立在网络之上的硬件或者软件系统,彼此之间通过消息等方式进行通信和协调。
|
||
分布式系统的核心是<strong>可扩展性</strong>,通过对服务、存储的扩展,来提高系统的处理能力,通过对多台服务器协同工作,来完成单台服务器无法处理的任务,尤其是高并发或者大数据量的任务。
|
||
除了对可扩展性的需求,分布式系统<strong>还有不出现单点故障、服务或者存储无状态等特点</strong>。</p>
|
||
<ul>
|
||
<li>单点故障(Single Point Failure)是指在系统中某个组件一旦失效,这会让整个系统无法工作,而不出现单点故障,单点不影响整体,就是分布式系统的设计目标之一;</li>
|
||
<li>无状态,是因为无状态的服务才能满足部分机器宕机不影响全部,可以随时进行扩展的需求。
|
||
由于分布式系统的特点,在分布式环境中更容易出现问题,比如节点之间通信失败、网络分区故障、多个副本的数据不一致等,为了更好地在分布式系统下进行开发,学者们提出了一系列的理论,其中具有代表性的就是 CAP 理论。</li>
|
||
</ul>
|
||
<h2>CAP 代表什么含义</h2>
|
||
<p>CAP 理论可以表述为,一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)这三项中的两项。
|
||
<img src="assets/Ciqah16ER_SAGmCqAADG3jNX34o901.png" alt="img" /></p>
|
||
<p><strong>一致性</strong>是指“所有节点同时看到相同的数据”,即更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致,等同于所有节点拥有数据的最新版本。
|
||
<strong>可用性</strong>是指“任何时候,读写都是成功的”,即服务一直可用,而且是正常响应时间。我们平时会看到一些 IT 公司的对外宣传,比如系统稳定性已经做到 3 个 9、4 个 9,即 99.9%、99.99%,这里的 N 个 9 就是对可用性的一个描述,叫做 SLA,即服务水平协议。比如我们说月度 99.95% 的 SLA,则意味着每个月服务出现故障的时间只能占总时间的 0.05%,如果这个月是 30 天,那么就是 21.6 分钟。
|
||
<strong>分区容忍性</strong>具体是指“当部分节点出现消息丢失或者分区故障的时候,分布式系统仍然能够继续运行”,即系统容忍网络出现分区,并且在遇到某节点或网络分区之间网络不可达的情况下,仍然能够对外提供满足一致性和可用性的服务。
|
||
在分布式系统中,由于系统的各层拆分,P 是确定的,CAP 的应用模型就是 CP 架构和 AP 架构。分布式系统所关注的,就是在 Partition Tolerance 的前提下,如何实现更好的 A 和更稳定的 C。</p>
|
||
<h3>CAP 理论的证明</h3>
|
||
<p>CAP 理论的证明有多种方式,通过<strong>反证</strong>的方式是最直观的。反证法来证明 CAP 定理,最早是由 Lynch 提出的,通过一个实际场景,如果 CAP 三者可同时满足,由于允许 P 的存在,则一定存在 Server 之间的丢包,如此则不能保证 C。
|
||
<img src="assets/Cgq2xl6ER_SAIiA0AACyIE8xkbY529.png" alt="img" />
|
||
首先构造一个单机系统,如上图,Client A 可以发送指令到 Server 并且设置更新 X 的值,Client 1 从 Server 读取该值,在单点情况下,即没有网络分区的情况下,通过简单的事务机制,可以保证 Client 1 读到的始终是最新值,不存在一致性的问题。
|
||
<img src="assets/Ciqah16ER_SAbt2BAAGrjnzOmj0352.png" alt="img" />
|
||
我们在系统中增加一组节点,因为允许分区容错,Write 操作可能在 Server 1 上成功,在 Server 2 上失败,这时候对于 Client 1 和 Client 2,就会读取到不一致的值,出现不一致的情况。如果要保持 X 值的一致性,Write 操作必须同时失败, 也就是降低系统的可用性。
|
||
可以看到,在分布式系统中,无法同时满足 CAP 定律中的“一致性”“可用性”和“分区容错性”三者。
|
||
在该证明中,对 CAP 的定义进行了更明确的声明:</p>
|
||
<ul>
|
||
<li>Consistency,一致性被称为原子对象,任何的读写都应该看起来是“原子”的,或串行的,写后面的读一定能读到前面写的内容,所有的读写请求都好像被全局排序;</li>
|
||
<li>Availability,对任何非失败节点都应该在有限时间内给出请求的回应(请求的可终止性);</li>
|
||
<li>Partition Tolerance,允许节点之间丢失任意多的消息,当网络分区发生时,节点之间的消息可能会完全丢失。</li>
|
||
</ul>
|
||
<h3>CAP 理论的应用</h3>
|
||
<p>CAP 理论提醒我们,在架构设计中,不要把精力浪费在如何设计能满足三者的完美分布式系统上,而要合理进行取舍,CAP 理论类似数学上的不可能三角,只能三者选其二,不能全部获得。
|
||
不同业务对于一致性的要求是不同的。举个例来讲,在微博上发表评论和点赞,用户对不一致是不敏感的,可以容忍相对较长时间的不一致,只要做好本地的交互,并不会影响用户体验;而我们在电商购物时,产品价格数据则是要求强一致性的,如果商家更改价格不能实时生效,则会对交易成功率有非常大的影响。
|
||
需要注意的是,CAP 理论中是忽略网络延迟的,也就是当事务提交时,节点间的数据复制一定是需要花费时间的。即使是同一个机房,从节点 A 复制到节点 B,由于现实中网络不是实时的,所以总会有一定的时间不一致。</p>
|
||
<h3>CP 和 AP 架构的取舍</h3>
|
||
<p>在通常的分布式系统中,为了保证数据的高可用,通常会将数据保留多个<strong>副本</strong>(Replica),网络分区是既成的现实,于是只能在可用性和一致性两者间做出选择。CAP 理论关注的是在绝对情况下,在工程上,可用性和一致性并不是完全对立的,我们关注的往往是如何在保持相对一致性的前提下,提高系统的可用性。
|
||
业务上对一致性的要求会直接反映在系统设计中,典型的就是 CP 和 AP 结构。</p>
|
||
<ul>
|
||
<li>CP 架构:对于 CP 来说,放弃可用性,追求一致性和分区容错性。</li>
|
||
</ul>
|
||
<p>我们熟悉的 ZooKeeper,就是采用了 CP 一致性,ZooKeeper 是一个分布式的服务框架,主要用来解决分布式集群中应用系统的协调和一致性问题。其核心算法是 Zab,所有设计都是为了一致性。在 CAP 模型中,ZooKeeper 是 CP,这意味着面对网络分区时,为了保持一致性,它是不可用的。关于 Zab 协议,将会在后面的 ZooKeeper 课时中介绍。</p>
|
||
<ul>
|
||
<li>AP 架构:对于 AP 来说,放弃强一致性,追求分区容错性和可用性,这是很多分布式系统设计时的选择,后面的 Base 也是根据 AP 来扩展的。</li>
|
||
</ul>
|
||
<p>和 ZooKeeper 相对的是 Eureka,Eureka 是 Spring Cloud 微服务技术栈中的服务发现组件,Eureka 的各个节点都是平等的,几个节点挂掉不影响正常节点的工作,剩余的节点依然可以提供注册和查询服务,只要有一台 Eureka 还在,就能保证注册服务可用,只不过查到的信息可能不是最新的版本,不保证一致性。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/00 开篇词:搭建分布式知识体系,挑战高薪 Offer.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/分布式技术原理与实战45讲-完/02 不同数据一致性模型有哪些应用?.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997691ae7d3cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|