mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-30 23:26:43 +08:00
464 lines
33 KiB
HTML
464 lines
33 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/00 开篇词 为什么你需要学习计算机组成原理?.md.html">00 开篇词 为什么你需要学习计算机组成原理?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/01 冯·诺依曼体系结构:计算机组成的金字塔.md.html">01 冯·诺依曼体系结构:计算机组成的金字塔</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">02 给你一张知识地图,计算机组成原理应该这么学</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html">03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">04 穿越功耗墙,我们该从哪些方面提升“性能”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/05 计算机指令:让我们试试用纸带编程.md.html">05 计算机指令:让我们试试用纸带编程</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/06 指令跳转:原来if...else就是goto.md.html">06 指令跳转:原来if...else就是goto</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/07 函数调用:为什么会发生stack overflow?.md.html">07 函数调用:为什么会发生stack overflow?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html">08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/09 程序装载:“640K内存”真的不够用么?.md.html">09 程序装载:“640K内存”真的不够用么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/10 动态链接:程序内部的“共享单车”.md.html">10 动态链接:程序内部的“共享单车”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html">11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html">12 理解电路:从电报机到门电路,我们如何做到“千里传信”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/13 加法器:如何像搭乐高一样搭电路(上)?.md.html">13 加法器:如何像搭乐高一样搭电路(上)?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/14 乘法器:如何像搭乐高一样搭电路(下)?.md.html">14 乘法器:如何像搭乐高一样搭电路(下)?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html">15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html">16 浮点数和定点数(下):深入理解浮点数到底有什么用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/17 建立数据通路(上):指令加运算=CPU.md.html">17 建立数据通路(上):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/18 建立数据通路(中):指令加运算=CPU.md.html">18 建立数据通路(中):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/19 建立数据通路(下):指令加运算=CPU.md.html">19 建立数据通路(下):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/20 面向流水线的指令设计(上):一心多用的现代CPU.md.html">20 面向流水线的指令设计(上):一心多用的现代CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html">21 面向流水线的指令设计(下):奔腾4是怎么失败的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/22 冒险和预测(一):hazard是“危”也是“机”.md.html">22 冒险和预测(一):hazard是“危”也是“机”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/23 冒险和预测(二):流水线里的接力赛.md.html">23 冒险和预测(二):流水线里的接力赛</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/24 冒险和预测(三):CPU里的“线程池”.md.html">24 冒险和预测(三):CPU里的“线程池”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">25 冒险和预测(四):今天下雨了,明天还会下雨么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html">26 Superscalar和VLIW:如何让CPU的吞吐率超过1?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">27 SIMD:如何加速矩阵乘法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/28 异常和中断:程序出错了怎么办?.md.html">28 异常和中断:程序出错了怎么办?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">29 CISC和RISC:为什么手机芯片都是ARM?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/30 GPU(上):为什么玩游戏需要使用GPU?.md.html">30 GPU(上):为什么玩游戏需要使用GPU?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/31 GPU(下):为什么深度学习需要使用GPU?.md.html">31 GPU(下):为什么深度学习需要使用GPU?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html">32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/33 解读TPU:设计和拆解一块ASIC芯片.md.html">33 解读TPU:设计和拆解一块ASIC芯片</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html">34 理解虚拟机:你在云上拿到的计算机是什么样的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html">35 存储器层次结构全景:数据存储的大金字塔长什么样?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html">36 局部性原理:数据库性能跟不上,加个缓存就好了?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html">37 理解CPU Cache(上):“4毫秒”究竟值多少钱?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/38 高速缓存(下):你确定你的数据更新了么?.md.html">38 高速缓存(下):你确定你的数据更新了么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html">39 MESI协议:如何让多核CPU的高速缓存保持一致?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/40 理解内存(上):虚拟内存和内存保护是什么?.md.html">40 理解内存(上):虚拟内存和内存保护是什么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/41 理解内存(下):解析TLB和内存保护.md.html">41 理解内存(下):解析TLB和内存保护</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/42 总线:计算机内部的高速公路.md.html">42 总线:计算机内部的高速公路</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html">43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html">44 理解IO_WAIT:IO性能到底是怎么回事儿?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/45 机械硬盘:Google早期用过的“黑科技”.md.html">45 机械硬盘:Google早期用过的“黑科技”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">46 SSD硬盘(上):如何完成性能优化的KPI?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/47 SSD硬盘(下):如何完成性能优化的KPI?.md.html">47 SSD硬盘(下):如何完成性能优化的KPI?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">48 DMA:为什么Kafka这么快?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/49 数据完整性(上):硬件坏了怎么办?.md.html">49 数据完整性(上):硬件坏了怎么办?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/50 数据完整性(下):如何还原犯罪现场?.md.html">50 数据完整性(下):如何还原犯罪现场?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/51 分布式计算:如果所有人的大脑都联网会怎样?.md.html">51 分布式计算:如果所有人的大脑都联网会怎样?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html">53 设计大型DMP系统(下):SSD拯救了所有的DBA</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/深入浅出计算机组成原理/55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html">55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?</a>
|
||
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">结束语 知也无涯,愿你也享受发现的乐趣</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?</h1>
|
||
<p>上一讲,我们学习了一个精妙的想法,Disruptor 通过缓存行填充,来利用好 CPU 的高速缓存。不知道你做完课后思考题之后,有没有体会到高速缓存在实践中带来的速度提升呢?</p>
|
||
<p>不过,利用 CPU 高速缓存,只是 Disruptor“快”的一个因素,那今天我们就来看一看 Disruptor 快的另一个因素,也就是“无锁”,而尽可能发挥 CPU 本身的高速处理性能。</p>
|
||
<h2>缓慢的锁</h2>
|
||
<p>Disruptor 作为一个高性能的生产者 - 消费者队列系统,一个核心的设计就是通过 RingBuffer 实现一个无锁队列。</p>
|
||
<p>上一讲里我们讲过,Java 里面的基础库里,就有像 LinkedBlockingQueue 这样的队列库。但是,这个队列库比起 Disruptor 里用的 RingBuffer 要慢上很多。慢的第一个原因我们说过,因为链表的数据在内存里面的布局对于高速缓存并不友好,而 RingBuffer 所使用的数组则不然。</p>
|
||
<p><img src="assets/9ce732cb22c49a8a26e870dddde66b69.jpeg" alt="img" /></p>
|
||
<p>LinkedBlockingQueue 慢,有另外一个重要的因素,那就是它对于锁的依赖。在生产者 - 消费者模式里,我们可能有多个消费者,同样也可能有多个生产者。多个生产者都要往队列的尾指针里面添加新的任务,就会产生多个线程的竞争。于是,在做这个事情的时候,生产者就需要拿到对于队列尾部的锁。同样地,在多个消费者去消费队列头的时候,也就产生竞争。同样消费者也要拿到锁。</p>
|
||
<p>那只有一个生产者,或者一个消费者,我们是不是就没有这个锁竞争的问题了呢?很遗憾,答案还是否定的。一般来说,在生产者 - 消费者模式下,消费者要比生产者快。不然的话,队列会产生积压,队列里面的任务会越堆越多。</p>
|
||
<p>一方面,你会发现越来越多的任务没有能够及时完成;另一方面,我们的内存也会放不下。虽然生产者 - 消费者模型下,我们都有一个队列来作为缓冲区,但是大部分情况下,这个缓冲区里面是空的。也就是说,即使只有一个生产者和一个消费者者,这个生产者指向的队列尾和消费者指向的队列头是同一个节点。于是,这两个生产者和消费者之间一样会产生锁竞争。</p>
|
||
<p>在 LinkedBlockingQueue 上,这个锁机制是通过 synchronized 这个 Java 关键字来实现的。一般情况下,这个锁最终会对应到操作系统层面的加锁机制(OS-based Lock),这个锁机制需要由操作系统的内核来进行裁决。这个裁决,也需要通过一次上下文切换(Context Switch),把没有拿到锁的线程挂起等待。</p>
|
||
<p>不知道你还记不记得,我们在<a href="https://time.geekbang.org/column/article/103717">第 28 讲</a>讲过的异常和中断,这里的上下文切换要做的和异常和中断里的是一样的。上下文切换的过程,需要把当前执行线程的寄存器等等的信息,保存到线程栈里面。而这个过程也必然意味着,已经加载到高速缓存里面的指令或者数据,又回到了主内存里面,会进一步拖慢我们的性能。</p>
|
||
<p>我们可以按照 Disruptor 介绍资料里提到的 Benchmark,写一段代码来看看,是不是真是这样的。这里我放了一段 Java 代码,代码的逻辑很简单,就是把一个 long 类型的 counter,从 0 自增到 5 亿。一种方式是没有任何锁,另外一个方式是每次自增的时候都要去取一个锁。</p>
|
||
<p>你可以在自己的电脑上试试跑一下这个程序。在我这里,两个方式执行所需要的时间分别是 207 毫秒和 9603 毫秒,性能差出了将近 50 倍。</p>
|
||
<pre><code>package com.xuwenhao.perf.jmm;
|
||
|
||
|
||
import java.util.concurrent.atomic.AtomicLong;
|
||
import java.util.concurrent.locks.Lock;
|
||
import java.util.concurrent.locks.ReentrantLock;
|
||
|
||
|
||
public class LockBenchmark{
|
||
|
||
|
||
public static void runIncrement()
|
||
{
|
||
long counter = 0;
|
||
long max = 500000000L;
|
||
long start = System.currentTimeMillis();
|
||
while (counter < max) {
|
||
counter++;
|
||
}
|
||
long end = System.currentTimeMillis();
|
||
System.out.println("Time spent is " + (end-start) + "ms without lock");
|
||
}
|
||
|
||
|
||
public static void runIncrementWithLock()
|
||
{
|
||
Lock lock = new ReentrantLock();
|
||
long counter = 0;
|
||
long max = 500000000L;
|
||
long start = System.currentTimeMillis();
|
||
while (counter < max) {
|
||
if (lock.tryLock()){
|
||
counter++;
|
||
lock.unlock();
|
||
}
|
||
}
|
||
long end = System.currentTimeMillis();
|
||
System.out.println("Time spent is " + (end-start) + "ms with lock");
|
||
}
|
||
|
||
|
||
public static void main(String[] args) {
|
||
runIncrement();
|
||
runIncrementWithLock();
|
||
</code></pre>
|
||
<p>加锁和不加锁自增 counter</p>
|
||
<pre><code>Time spent is 207ms without lock
|
||
Time spent is 9603ms with lock
|
||
</code></pre>
|
||
<p>性能差出将近 10 倍</p>
|
||
<h2>无锁的 RingBuffer</h2>
|
||
<p>加锁很慢,所以 Disruptor 的解决方案就是“无锁”。这个“无锁”指的是没有操作系统层面的锁。实际上,Disruptor 还是利用了一个 CPU 硬件支持的指令,称之为 CAS(Compare And Swap,比较和交换)。在 Intel CPU 里面,这个对应的指令就是 cmpxchg。那么下面,我们就一起从 Disruptor 的源码,到具体的硬件指令来看看这是怎么一回事儿。</p>
|
||
<p>Disruptor 的 RingBuffer 是这么设计的,它和直接在链表的头和尾加锁不同。Disruptor 的 RingBuffer 创建了一个 Sequence 对象,用来指向当前的 RingBuffer 的头和尾。这个头和尾的标识呢,不是通过一个指针来实现的,而是通过一个<strong>序号</strong>。这也是为什么对应源码里面的类名叫 Sequence。</p>
|
||
<p><img src="assets/b64487a7b6b45393fdfa7e2d63e176ec.jpeg" alt="img" /></p>
|
||
<p>在这个 RingBuffer 当中,进行生产者和消费者之间的资源协调,采用的是对比序号的方式。当生产者想要往队列里加入新数据的时候,它会把当前的生产者的 Sequence 的序号,加上需要加入的新数据的数量,然后和实际的消费者所在的位置进行对比,看看队列里是不是有足够的空间加入这些数据,而不会覆盖掉消费者还没有处理完的数据。</p>
|
||
<p>在 Sequence 的代码里面,就是通过 compareAndSet 这个方法,并且最终调用到了 UNSAFE.compareAndSwapLong,也就是直接使用了 CAS 指令。</p>
|
||
<pre><code> public boolean compareAndSet(final long expectedValue, final long newValue)
|
||
{
|
||
return UNSAFE.compareAndSwapLong(this, VALUE_OFFSET, expectedValue, newValue);
|
||
}
|
||
|
||
|
||
public long addAndGet(final long increment)
|
||
{
|
||
long currentValue;
|
||
long newValue;
|
||
|
||
|
||
do
|
||
{
|
||
currentValue = get();
|
||
newValue = currentValue + increment;
|
||
}
|
||
while (!compareAndSet(currentValue, newValue));
|
||
|
||
|
||
return newValue;
|
||
</code></pre>
|
||
<p>Sequence 源码中的 addAndGet,如果 CAS 的操作没有成功,它会不断忙等待地重试</p>
|
||
<p>这个 CAS 指令,也就是比较和交换的操作,并不是基础库里的一个函数。它也不是操作系统里面实现的一个系统调用,而是<strong>一个 CPU 硬件支持的机器指令</strong>。在我们服务器所使用的 Intel CPU 上,就是 cmpxchg 这个指令。</p>
|
||
<pre><code>compxchg [ax] (隐式参数,EAX 累加器), [bx] (源操作数地址), [cx] (目标操作数地址)
|
||
复制代码
|
||
</code></pre>
|
||
<p>cmpxchg 指令,一共有三个操作数,第一个操作数不在指令里面出现,是一个隐式的操作数,也就是 EAX 累加寄存器里面的值。第二个操作数就是源操作数,并且指令会对比这个操作数和上面的累加寄存器里面的值。</p>
|
||
<p>如果值是相同的,那一方面,CPU 会把 ZF(也就是条件码寄存器里面零标志位的值)设置为 1,然后再把第三个操作数(也就是目标操作数),设置到源操作数的地址上。如果不相等的话,就会把源操作数里面的值,设置到累加器寄存器里面。</p>
|
||
<p>我在这里放了这个逻辑对应的伪代码,你可以看一下。如果你对汇编指令、条件码寄存器这些知识点有点儿模糊了,可以回头去看看<a href="https://time.geekbang.org/column/article/93359">第 5</a><a href="https://time.geekbang.org/column/article/93359">讲</a>、<a href="https://time.geekbang.org/column/article/94075">第 6 讲</a>关于汇编指令的部分。</p>
|
||
<pre><code>IF [ax]< == [bx] THEN [ZF] = 1, [bx] = [cx]
|
||
ELSE [ZF] = 0, [ax] = [bx]
|
||
</code></pre>
|
||
<p>单个指令是原子的,这也就意味着在使用 CAS 操作的时候,我们不再需要单独进行加锁,直接调用就可以了。</p>
|
||
<p>没有了锁,CPU 这部高速跑车就像在赛道上行驶,不会遇到需要上下文切换这样的红灯而停下来。虽然会遇到像 CAS 这样复杂的机器指令,就好像赛道上会有 U 型弯一样,不过不用完全停下来等待,我们 CPU 运行起来仍然会快很多。</p>
|
||
<p>那么,CAS 操作到底会有多快呢?我们还是用一段 Java 代码来看一下。</p>
|
||
<pre><code>package com.xuwenhao.perf.jmm;
|
||
|
||
|
||
import java.util.concurrent.atomic.AtomicLong;
|
||
import java.util.concurrent.locks.Lock;
|
||
import java.util.concurrent.locks.ReentrantLock;
|
||
|
||
|
||
public class LockBenchmark {
|
||
|
||
|
||
public static void runIncrementAtomic()
|
||
{
|
||
AtomicLong counter = new AtomicLong(0);
|
||
long max = 500000000L;
|
||
long start = System.currentTimeMillis();
|
||
while (counter.incrementAndGet() < max) {
|
||
}
|
||
long end = System.currentTimeMillis();
|
||
System.out.println("Time spent is " + (end-start) + "ms with cas");
|
||
}
|
||
|
||
|
||
public static void main(String[] args) {
|
||
runIncrementAtomic();
|
||
}
|
||
Time spent is 3867ms with cas
|
||
复制代码
|
||
</code></pre>
|
||
<p>和上面的 counter 自增一样,只不过这一次,自增我们采用了 AtomicLong 这个 Java 类。里面的 incrementAndGet 最终到了 CPU 指令层面,在实现的时候用的就是 CAS 操作。可以看到,它所花费的时间,虽然要比没有任何锁的操作慢上一个数量级,但是比起使用 ReentrantLock 这样的操作系统锁的机制,还是减少了一半以上的时间。</p>
|
||
<h2>总结延伸</h2>
|
||
<p>好了,咱们专栏的正文内容到今天就要结束了。今天最后一讲,我带着你一起看了 Disruptor 代码的一个核心设计,也就是它的 RingBuffer 是怎么做到无锁的。</p>
|
||
<p>Java 基础库里面的 BlockingQueue,都需要通过显示地加锁来保障生产者之间、消费者之间,乃至生产者和消费者之间,不会发生锁冲突的问题。</p>
|
||
<p>但是,加锁会大大拖慢我们的性能。在获取锁过程中,CPU 没有去执行计算的相关指令,而要等待操作系统进行锁竞争的裁决。而那些没有拿到锁而被挂起等待的线程,则需要进行上下文切换。这个上下文切换,会把挂起线程的寄存器里的数据放到线程的程序栈里面去。这也意味着,加载到高速缓存里面的数据也失效了,程序就变得更慢了。</p>
|
||
<p>Disruptor 里的 RingBuffer 采用了一个无锁的解决方案,通过 CAS 这样的操作,去进行序号的自增和对比,使得 CPU 不需要获取操作系统的锁。而是能够继续顺序地执行 CPU 指令。没有上下文切换、没有操作系统锁,自然程序就跑得快了。不过因为采用了 CAS 这样的忙等待(Busy-Wait)的方式,会使得我们的 CPU 始终满负荷运转,消耗更多的电,算是一个小小的缺点。</p>
|
||
<p>程序里面的 CAS 调用,映射到我们的 CPU 硬件层面,就是一个机器指令,这个指令就是 cmpxchg。可以看到,当想要追求最极致的性能的时候,我们会从应用层、贯穿到操作系统,乃至最后的 CPU 硬件,搞清楚从高级语言到系统调用,乃至最后的汇编指令,这整个过程是怎么执行代码的。而这个,也是学习组成原理这门专栏的意义所在。</p>
|
||
<h2>推荐阅读</h2>
|
||
<p>不知道上一讲说的 Disruptor 相关材料,你有没有读完呢?如果没有读完的话,我建议你还是先去研读一下。</p>
|
||
<p>如果你已经读完了,这里再给你推荐一些额外的阅读材料,那就是著名的<a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.8674&rep=rep1&type=pdf">Implement Lock-Free Queues</a>这篇论文。你可以更深入地学习一下,怎么实现一个无锁队列。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997b0209043cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|