mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-17 08:46:40 +08:00
411 lines
32 KiB
HTML
411 lines
32 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>09 Netty 入门,用它做网络编程都说好(上).md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/00 开篇词 深入掌握 Dubbo 原理与实现,提升你的职场竞争力.md.html">00 开篇词 深入掌握 Dubbo 原理与实现,提升你的职场竞争力</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/01 Dubbo 源码环境搭建:千里之行,始于足下.md.html">01 Dubbo 源码环境搭建:千里之行,始于足下</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/02 Dubbo 的配置总线:抓住 URL,就理解了半个 Dubbo.md.html">02 Dubbo 的配置总线:抓住 URL,就理解了半个 Dubbo</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/03 Dubbo SPI 精析,接口实现两极反转(上).md.html">03 Dubbo SPI 精析,接口实现两极反转(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/04 Dubbo SPI 精析,接口实现两极反转(下).md.html">04 Dubbo SPI 精析,接口实现两极反转(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/05 海量定时任务,一个时间轮搞定.md.html">05 海量定时任务,一个时间轮搞定</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/06 ZooKeeper 与 Curator,求你别用 ZkClient 了(上).md.html">06 ZooKeeper 与 Curator,求你别用 ZkClient 了(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/07 ZooKeeper 与 Curator,求你别用 ZkClient 了(下).md.html">07 ZooKeeper 与 Curator,求你别用 ZkClient 了(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/08 代理模式与常见实现.md.html">08 代理模式与常见实现</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/Dubbo源码解读与实战-完/09 Netty 入门,用它做网络编程都说好(上).md.html">09 Netty 入门,用它做网络编程都说好(上)</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/10 Netty 入门,用它做网络编程都说好(下).md.html">10 Netty 入门,用它做网络编程都说好(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/11 简易版 RPC 框架实现(上).md.html">11 简易版 RPC 框架实现(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/12 简易版 RPC 框架实现(下).md.html">12 简易版 RPC 框架实现(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/13 本地缓存:降低 ZooKeeper 压力的一个常用手段.md.html">13 本地缓存:降低 ZooKeeper 压力的一个常用手段</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/14 重试机制是网络操作的基本保证.md.html">14 重试机制是网络操作的基本保证</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/15 ZooKeeper 注册中心实现,官方推荐注册中心实践.md.html">15 ZooKeeper 注册中心实现,官方推荐注册中心实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/16 Dubbo Serialize 层:多种序列化算法,总有一款适合你.md.html">16 Dubbo Serialize 层:多种序列化算法,总有一款适合你</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/17 Dubbo Remoting 层核心接口分析:这居然是一套兼容所有 NIO 框架的设计?.md.html">17 Dubbo Remoting 层核心接口分析:这居然是一套兼容所有 NIO 框架的设计?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/18 Buffer 缓冲区:我们不生产数据,我们只是数据的搬运工.md.html">18 Buffer 缓冲区:我们不生产数据,我们只是数据的搬运工</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/19 Transporter 层核心实现:编解码与线程模型一文打尽(上).md.html">19 Transporter 层核心实现:编解码与线程模型一文打尽(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/20 Transporter 层核心实现:编解码与线程模型一文打尽(下).md.html">20 Transporter 层核心实现:编解码与线程模型一文打尽(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/21 Exchange 层剖析:彻底搞懂 Request-Response 模型(上).md.html">21 Exchange 层剖析:彻底搞懂 Request-Response 模型(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/22 Exchange 层剖析:彻底搞懂 Request-Response 模型(下).md.html">22 Exchange 层剖析:彻底搞懂 Request-Response 模型(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/23 核心接口介绍,RPC 层骨架梳理.md.html">23 核心接口介绍,RPC 层骨架梳理</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/24 从 Protocol 起手,看服务暴露和服务引用的全流程(上).md.html">24 从 Protocol 起手,看服务暴露和服务引用的全流程(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/25 从 Protocol 起手,看服务暴露和服务引用的全流程(下).md.html">25 从 Protocol 起手,看服务暴露和服务引用的全流程(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/26 加餐:直击 Dubbo “心脏”,带你一起探秘 Invoker(上).md.html">26 加餐:直击 Dubbo “心脏”,带你一起探秘 Invoker(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/27 加餐:直击 Dubbo “心脏”,带你一起探秘 Invoker(下).md.html">27 加餐:直击 Dubbo “心脏”,带你一起探秘 Invoker(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/28 复杂问题简单化,代理帮你隐藏了多少底层细节?.md.html">28 复杂问题简单化,代理帮你隐藏了多少底层细节?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/29 加餐:HTTP 协议 + JSON-RPC,Dubbo 跨语言就是如此简单.md.html">29 加餐:HTTP 协议 + JSON-RPC,Dubbo 跨语言就是如此简单</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/30 Filter 接口,扩展 Dubbo 框架的常用手段指北.md.html">30 Filter 接口,扩展 Dubbo 框架的常用手段指北</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/31 加餐:深潜 Directory 实现,探秘服务目录玄机.md.html">31 加餐:深潜 Directory 实现,探秘服务目录玄机</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/32 路由机制:请求到底怎么走,它说了算(上).md.html">32 路由机制:请求到底怎么走,它说了算(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/33 路由机制:请求到底怎么走,它说了算(下).md.html">33 路由机制:请求到底怎么走,它说了算(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/34 加餐:初探 Dubbo 动态配置的那些事儿.md.html">34 加餐:初探 Dubbo 动态配置的那些事儿</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/35 负载均衡:公平公正物尽其用的负载均衡策略,这里都有(上).md.html">35 负载均衡:公平公正物尽其用的负载均衡策略,这里都有(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/36 负载均衡:公平公正物尽其用的负载均衡策略,这里都有(下).md.html">36 负载均衡:公平公正物尽其用的负载均衡策略,这里都有(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/37 集群容错:一个好汉三个帮(上).md.html">37 集群容错:一个好汉三个帮(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/38 集群容错:一个好汉三个帮(下).md.html">38 集群容错:一个好汉三个帮(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/39 加餐:多个返回值不用怕,Merger 合并器来帮忙.md.html">39 加餐:多个返回值不用怕,Merger 合并器来帮忙</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/40 加餐:模拟远程调用,Mock 机制帮你搞定.md.html">40 加餐:模拟远程调用,Mock 机制帮你搞定</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/41 加餐:一键通关服务发布全流程.md.html">41 加餐:一键通关服务发布全流程</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/42 加餐:服务引用流程全解析.md.html">42 加餐:服务引用流程全解析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/43 服务自省设计方案:新版本新方案.md.html">43 服务自省设计方案:新版本新方案</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/44 元数据方案深度剖析,如何避免注册中心数据量膨胀?.md.html">44 元数据方案深度剖析,如何避免注册中心数据量膨胀?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/45 加餐:深入服务自省方案中的服务发布订阅(上).md.html">45 加餐:深入服务自省方案中的服务发布订阅(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/46 加餐:深入服务自省方案中的服务发布订阅(下).md.html">46 加餐:深入服务自省方案中的服务发布订阅(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/47 配置中心设计与实现:集中化配置 and 本地化配置,我都要(上).md.html">47 配置中心设计与实现:集中化配置 and 本地化配置,我都要(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/48 配置中心设计与实现:集中化配置 and 本地化配置,我都要(下).md.html">48 配置中心设计与实现:集中化配置 and 本地化配置,我都要(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/Dubbo源码解读与实战-完/49 结束语 认真学习,缩小差距.md.html">49 结束语 认真学习,缩小差距</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>09 Netty 入门,用它做网络编程都说好(上)</h1>
|
||
<p>了解 Java 的同学应该知道,JDK 本身提供了一套 NIO 的 API,但是这一套原生的 API 存在一系列的问题。</p>
|
||
<ul>
|
||
<li><strong>Java NIO 的 API 非常复杂。</strong> 要写出成熟可用的 Java NIO 代码,需要熟练掌握 JDK 中的 Selector、ServerSocketChannel、SocketChannel、ByteBuffer 等组件,还要理解其中一些反人类的设计以及底层原理,这对新手来说是非常不友好的。</li>
|
||
<li><strong>如果直接使用 Java NIO 进行开发,难度和开发量会非常大</strong>。我们需要自己补齐很多可靠性方面的实现,例如,网络波动导致的连接重连、半包读写等。这就会导致一些本末倒置的情况出现:核心业务逻辑比较简单,但补齐其他公共能力的代码非常多,开发耗时比较长。这时就需要一个统一的 NIO 框架来封装这些公共能力了。</li>
|
||
<li><strong>JDK 自身的 Bug</strong>。其中比较出名的就要属 Epoll Bug 了,这个 Bug 会导致 Selector 空轮询,CPU 使用率达到 100%,这样就会导致业务逻辑无法执行,降低服务性能。</li>
|
||
</ul>
|
||
<p>Netty 在 JDK 自带的 NIO API 基础之上进行了封装,解决了 JDK 自身的一些问题,具备如下优点:</p>
|
||
<ul>
|
||
<li>入门简单,使用方便,文档齐全,无其他依赖,只依赖 JDK 就够了。</li>
|
||
<li>高性能,高吞吐,低延迟,资源消耗少。</li>
|
||
<li>灵活的线程模型,支持阻塞和非阻塞的I/O 模型。</li>
|
||
<li>代码质量高,目前主流版本基本没有 Bug。</li>
|
||
</ul>
|
||
<p>正因为 Netty 有以上优点,所以很多互联网公司以及开源的 RPC 框架都将其作为网络通信的基础库,例如,Apache Spark、Apache Flink、 Elastic Search 以及我们本课程分析的 Dubbo 等。</p>
|
||
<p>下面我们将从 I/O 模型和线程模型的角度详细为你介绍 Netty 的核心设计,进而帮助你全面掌握 Netty 原理。</p>
|
||
<h3>Netty I/O 模型设计</h3>
|
||
<p>在进行网络 I/O 操作的时候,用什么样的方式读写数据将在很大程度上决定了 I/O 的性能。作为一款优秀的网络基础库,Netty 就采用了 NIO 的 I/O 模型,这也是其高性能的重要原因之一。</p>
|
||
<h4>1. 传统阻塞 I/O 模型</h4>
|
||
<p>在传统阻塞型 I/O 模型(即我们常说的 BIO)中,如下图所示,每个请求都需要独立的线程完成读数据、业务处理以及写回数据的完整操作。</p>
|
||
<p><img src="assets/CgqCHl9EvKaAF18_AACJ4Y62QAY004.png" alt="png" /></p>
|
||
<p>一个线程在同一时刻只能与一个连接绑定,如下图所示,当请求的并发量较大时,就需要创建大量线程来处理连接,这就会导致系统浪费大量的资源进行线程切换,降低程序的性能。我们知道,网络数据的传输速度是远远慢于 CPU 的处理速度,连接建立后,并不总是有数据可读,连接也并不总是可写,那么线程就只能阻塞等待,CPU 的计算能力不能得到充分发挥,同时还会导致大量线程的切换,浪费资源。</p>
|
||
<p><img src="assets/CgqCHl9EvLSAQzfFAACIPU0Pqkg586.png" alt="png" /></p>
|
||
<h4>2. I/O 多路复用模型</h4>
|
||
<p>针对传统的阻塞 I/O 模型的缺点,I/O 复用的模型在性能方面有不小的提升。I/O 复用模型中的多个连接会共用一个 Selector 对象,由 Selector 感知连接的读写事件,而此时的线程数并不需要和连接数一致,只需要很少的线程定期从 Selector 上查询连接的读写状态即可,无须大量线程阻塞等待连接。当某个连接有新的数据可以处理时,操作系统会通知线程,线程从阻塞状态返回,开始进行读写操作以及后续的业务逻辑处理。I/O 复用的模型如下图所示:</p>
|
||
<p><img src="assets/Ciqc1F9EvNOACOC5AADhkXKnAFg681.png" alt="png" /></p>
|
||
<p>Netty 就是采用了上述 I/O 复用的模型。由于多路复用器 Selector 的存在,可以同时并发处理成百上千个网络连接,大大增加了服务器的处理能力。另外,Selector 并不会阻塞线程,也就是说当一个连接不可读或不可写的时候,线程可以去处理其他可读或可写的连接,这就充分提升了 I/O 线程的运行效率,避免由于频繁 I/O 阻塞导致的线程切换。如下图所示:</p>
|
||
<p><img src="assets/Ciqc1F9EvOOADRMzAACeQMLGfbs278.png" alt="png" /></p>
|
||
<p>从数据处理的角度来看,传统的阻塞 I/O 模型处理的是字节流或字符流,也就是以流式的方式顺序地从一个数据流中读取一个或多个字节,并且不能随意改变读取指针的位置。而在 NIO 中则抛弃了这种传统的 I/O 流概念,引入了 Channel 和 Buffer 的概念,可以从 Channel 中读取数据到 Buffer 中或将数据从 Buffer 中写入到 Channel。Buffer 不像传统 I/O 中的流那样必须顺序操作,在 NIO 中可以读写 Buffer 中任意位置的数据。</p>
|
||
<h3>Netty 线程模型设计</h3>
|
||
<p>服务器程序在读取到二进制数据之后,首先需要通过编解码,得到程序逻辑可以理解的消息,然后将消息传入业务逻辑进行处理,并产生相应的结果,返回给客户端。编解码逻辑、消息派发逻辑、业务处理逻辑以及返回响应的逻辑,是放到一个线程里面串行执行,还是分配到不同的线程中执行,会对程序的性能产生很大的影响。所以,优秀的线程模型对一个高性能网络库来说是至关重要的。</p>
|
||
<p><strong>Netty 采用了 Reactor 线程模型的设计。</strong> Reactor 模式,也被称为 Dispatcher 模式,<strong>核心原理是 Selector 负责监听 I/O 事件,在监听到 I/O 事件之后,分发(Dispatch)给相关线程进行处理</strong>。</p>
|
||
<p>为了帮助你更好地了解 Netty 线程模型的设计理念,我们将从最基础的单 Reactor 单线程模型开始介绍,然后逐步增加模型的复杂度,最终到 Netty 目前使用的非常成熟的线程模型设计。</p>
|
||
<h4>1. 单 Reactor 单线程</h4>
|
||
<p>Reactor 对象监听客户端请求事件,收到事件后通过 Dispatch 进行分发。如果是连接建立的事件,则由 Acceptor 通过 Accept 处理连接请求,然后创建一个 Handler 对象处理连接建立之后的业务请求。如果不是连接建立的事件,而是数据的读写事件,则 Reactor 会将事件分发对应的 Handler 来处理,由这里唯一的线程调用 Handler 对象来完成读取数据、业务处理、发送响应的完整流程。当然,该过程中也可能会出现连接不可读或不可写等情况,该单线程会去执行其他 Handler 的逻辑,而不是阻塞等待。具体情况如下图所示:</p>
|
||
<p><img src="assets/CgqCHl9EvVGAPXATAAEj0pK8ONM000.png" alt="png" /></p>
|
||
<p>单 Reactor 单线程的优点就是:线程模型简单,没有引入多线程,自然也就没有多线程并发和竞争的问题。</p>
|
||
<p>但其缺点也非常明显,那就是<strong>性能瓶颈问题</strong>,一个线程只能跑在一个 CPU 上,能处理的连接数是有限的,无法完全发挥多核 CPU 的优势。一旦某个业务逻辑耗时较长,这唯一的线程就会卡在上面,无法处理其他连接的请求,程序进入假死的状态,可用性也就降低了。正是由于这种限制,一般只会在<strong>客户端</strong>使用这种线程模型。</p>
|
||
<h4>2. 单 Reactor 多线程</h4>
|
||
<p>在单 Reactor 多线程的架构中,Reactor 监控到客户端请求之后,如果连接建立的请求,则由Acceptor 通过 accept 处理,然后创建一个 Handler 对象处理连接建立之后的业务请求。如果不是连接建立请求,则 Reactor 会将事件分发给调用连接对应的 Handler 来处理。到此为止,该流程与单 Reactor 单线程的模型基本一致,<strong>唯一的区别就是执行 Handler 逻辑的线程隶属于一个线程池</strong>。</p>
|
||
<p><img src="assets/CgqCHl9EvWqAJ5jpAAFbymUVJ8o272.png" alt="png" /></p>
|
||
<p>单 Reactor 多线程模型</p>
|
||
<p>很明显,单 Reactor 多线程的模型可以充分利用多核 CPU 的处理能力,提高整个系统的吞吐量,但引入多线程模型就要考虑线程并发、数据共享、线程调度等问题。在这个模型中,只有一个线程来处理 Reactor 监听到的所有 I/O 事件,其中就包括连接建立事件以及读写事件,当连接数不断增大的时候,这个唯一的 Reactor 线程也会遇到瓶颈。</p>
|
||
<h4>3. 主从 Reactor 多线程</h4>
|
||
<p>为了解决单 Reactor 多线程模型中的问题,我们可以引入多个 Reactor。其中,Reactor 主线程负责通过 Acceptor 对象处理 MainReactor 监听到的连接建立事件,当Acceptor 完成网络连接的建立之后,MainReactor 会将建立好的连接分配给 SubReactor 进行后续监听。</p>
|
||
<p>当一个连接被分配到一个 SubReactor 之上时,会由 SubReactor 负责监听该连接上的读写事件。当有新的读事件(OP_READ)发生时,Reactor 子线程就会调用对应的 Handler 读取数据,然后分发给 Worker 线程池中的线程进行处理并返回结果。待处理结束之后,Handler 会根据处理结果调用 send 将响应返回给客户端,当然此时连接要有可写事件(OP_WRITE)才能发送数据。</p>
|
||
<p><img src="assets/CgqCHl9EvXuARvm7AAF3raiQza8716.png" alt="png" /></p>
|
||
<p>主从 Reactor 多线程模型</p>
|
||
<p>主从 Reactor 多线程的设计模式解决了单一 Reactor 的瓶颈。<strong>主从 Reactor 职责明确,主 Reactor 只负责监听连接建立事件,SubReactor只负责监听读写事件</strong>。整个主从 Reactor 多线程架构充分利用了多核 CPU 的优势,可以支持扩展,而且与具体的业务逻辑充分解耦,复用性高。但不足的地方是,在交互上略显复杂,需要一定的编程门槛。</p>
|
||
<h4>4. Netty 线程模型</h4>
|
||
<p>Netty 同时支持上述几种线程模式,Netty 针对服务器端的设计是在主从 Reactor 多线程模型的基础上进行的修改,如下图所示:</p>
|
||
<p><img src="assets/Ciqc1F9EvZyAZsQlAAMdGh4CXMI139.png" alt="png" /></p>
|
||
<p><strong>Netty 抽象出两组线程池:BossGroup 专门用于接收客户端的连接,WorkerGroup 专门用于网络的读写</strong>。BossGroup 和 WorkerGroup 类型都是 NioEventLoopGroup,相当于一个事件循环组,其中包含多个事件循环 ,每一个事件循环是 NioEventLoop。</p>
|
||
<p>NioEventLoop 表示一个不断循环的、执行处理任务的线程,每个 NioEventLoop 都有一个Selector 对象与之对应,用于监听绑定在其上的连接,这些连接上的事件由 Selector 对应的这条线程处理。每个 NioEventLoopGroup 可以含有多个 NioEventLoop,也就是多个线程。</p>
|
||
<p>每个 Boss NioEventLoop 会监听 Selector 上连接建立的 accept 事件,然后处理 accept 事件与客户端建立网络连接,生成相应的 NioSocketChannel 对象,一个 NioSocketChannel 就表示一条网络连接。之后会将 NioSocketChannel 注册到某个 Worker NioEventLoop 上的 Selector 中。</p>
|
||
<p>每个 Worker NioEventLoop 会监听对应 Selector 上的 read/write 事件,当监听到 read/write 事件的时候,会通过 Pipeline 进行处理。一个 Pipeline 与一个 Channel 绑定,在 Pipeline 上可以添加多个 ChannelHandler,每个 ChannelHandler 中都可以包含一定的逻辑,例如编解码等。Pipeline 在处理请求的时候,会按照我们指定的顺序调用 ChannelHandler。</p>
|
||
<h3>总结</h3>
|
||
<p>在本课时我们重点介绍了网络 I/O 的一些背景知识,以及 Netty 的一些宏观设计模型。</p>
|
||
<ul>
|
||
<li>首先,我们介绍了 Java NIO 的一些缺陷和不足,这也是 Netty 等网络库出现的重要原因之一。</li>
|
||
<li>接下来,我们介绍了 Netty 在 I/O 模型上的设计,阐述了 I/O 多路复用的优势。</li>
|
||
<li>最后,我们从基础的单 Reactor 单线程模型开始,一步步深入,介绍了常见的网络 I/O 线程模型,并介绍了 Netty 目前使用的线程模型。</li>
|
||
</ul>
|
||
<p>当然,关于 Netty 的相关内容,也欢迎你在留言区与我分享和交流。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/Dubbo源码解读与实战-完/08 代理模式与常见实现.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/Dubbo源码解读与实战-完/10 Netty 入门,用它做网络编程都说好(下).md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70996f23bc3f3d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|