learn.lianglianglee.com/专栏/Redis 核心原理与实战/33 实战:Redis 性能测试.md.html
2022-05-11 18:52:13 +08:00

1435 lines
29 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
<link rel="icon" href="/static/favicon.png">
<title>33 实战Redis 性能测试.md.html</title>
<!-- Spectre.css framework -->
<link rel="stylesheet" href="/static/index.css">
<!-- theme css & js -->
<meta name="generator" content="Hexo 4.2.0">
</head>
<body>
<div class="book-container">
<div class="book-sidebar">
<div class="book-brand">
<a href="/">
<img src="/static/favicon.png">
<span>技术文章摘抄</span>
</a>
</div>
<div class="book-menu uncollapsible">
<ul class="uncollapsible">
<li><a href="/" class="current-tab">首页</a></li>
</ul>
<ul class="uncollapsible">
<li><a href="../">上一级</a></li>
</ul>
<ul class="uncollapsible">
<li>
<a href="/专栏/Redis 核心原理与实战/01 Redis 是如何执行的.md">01 Redis 是如何执行的.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/02 Redis 快速搭建与使用.md">02 Redis 快速搭建与使用.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/03 Redis 持久化——RDB.md">03 Redis 持久化——RDB.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/04 Redis 持久化——AOF.md">04 Redis 持久化——AOF.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/05 Redis 持久化——混合持久化.md">05 Redis 持久化——混合持久化.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/06 字符串使用与内部实现原理.md">06 字符串使用与内部实现原理.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/07 附录:更多字符串操作命令.md">07 附录:更多字符串操作命令.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/08 字典使用与内部实现原理.md">08 字典使用与内部实现原理.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/09 附录:更多字典操作命令.md">09 附录:更多字典操作命令.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/10 列表使用与内部实现原理.md">10 列表使用与内部实现原理.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/11 附录:更多列表操作命令.md">11 附录:更多列表操作命令.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/12 集合使用与内部实现原理.md">12 集合使用与内部实现原理.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/13 附录:更多集合操作命令.md">13 附录:更多集合操作命令.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/14 有序集合使用与内部实现原理.md">14 有序集合使用与内部实现原理.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/15 附录:更多有序集合操作命令.md">15 附录:更多有序集合操作命令.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/16 Redis 事务深入解析.md">16 Redis 事务深入解析.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/17 Redis 键值过期操作.md">17 Redis 键值过期操作.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/18 Redis 过期策略与源码分析.md">18 Redis 过期策略与源码分析.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/19 Redis 管道技术——Pipeline.md">19 Redis 管道技术——Pipeline.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/20 查询附近的人——GEO.md">20 查询附近的人——GEO.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/21 游标迭代器过滤器——Scan.md">21 游标迭代器过滤器——Scan.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/22 优秀的基数统计算法——HyperLogLog.md">22 优秀的基数统计算法——HyperLogLog.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/23 内存淘汰机制与算法.md">23 内存淘汰机制与算法.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/24 消息队列——发布订阅模式.md">24 消息队列——发布订阅模式.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/25 消息队列的其他实现方式.md">25 消息队列的其他实现方式.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/26 消息队列终极解决方案——Stream.md">26 消息队列终极解决方案——Stream.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/27 消息队列终极解决方案——Stream.md">27 消息队列终极解决方案——Stream.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/28 实战:分布式锁详解与代码.md">28 实战:分布式锁详解与代码.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/29 实战:布隆过滤器安装与使用及原理分析.md">29 实战:布隆过滤器安装与使用及原理分析.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/30 完整案例:实现延迟队列的两种方法.md">30 完整案例:实现延迟队列的两种方法.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/31 实战:定时任务案例.md">31 实战:定时任务案例.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/32 实战RediSearch 高性能的全文搜索引擎.md">32 实战RediSearch 高性能的全文搜索引擎.md.html</a>
</li>
<li>
<a class="current-tab" href="/专栏/Redis 核心原理与实战/33 实战Redis 性能测试.md">33 实战Redis 性能测试.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/34 实战Redis 慢查询.md">34 实战Redis 慢查询.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/35 实战Redis 性能优化方案.md">35 实战Redis 性能优化方案.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/36 实战Redis 主从同步.md">36 实战Redis 主从同步.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/37 实战Redis哨兵模式.md">37 实战Redis哨兵模式.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/38 实战Redis 哨兵模式(下).md">38 实战Redis 哨兵模式(下).md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/39 实战Redis 集群模式(上).md">39 实战Redis 集群模式(上).md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/40 实战Redis 集群模式(下).md">40 实战Redis 集群模式(下).md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/41 案例Redis 问题汇总和相关解决方案.md">41 案例Redis 问题汇总和相关解决方案.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/42 技能学习指南.md">42 技能学习指南.md.html</a>
</li>
<li>
<a href="/专栏/Redis 核心原理与实战/43 加餐Redis 的可视化管理工具.md">43 加餐Redis 的可视化管理工具.md.html</a>
</li>
</ul>
</div>
</div>
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
<div class="sidebar-toggle-inner"></div>
</div>
<script>
function add_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.add('show')
}
function remove_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.remove('show')
}
function sidebar_toggle() {
let sidebar_toggle = document.querySelector('.sidebar-toggle')
let sidebar = document.querySelector('.book-sidebar')
let content = document.querySelector('.off-canvas-content')
if (sidebar_toggle.classList.contains('extend')) { // show
sidebar_toggle.classList.remove('extend')
sidebar.classList.remove('hide')
content.classList.remove('extend')
} else { // hide
sidebar_toggle.classList.add('extend')
sidebar.classList.add('hide')
content.classList.add('extend')
}
}
function open_sidebar() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.add('show')
overlay.classList.add('show')
}
function hide_canvas() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.remove('show')
overlay.classList.remove('show')
}
</script>
<div class="off-canvas-content">
<div class="columns">
<div class="column col-12 col-lg-12">
<div class="book-navbar">
<!-- For Responsive Layout -->
<header class="navbar">
<section class="navbar-section">
<a onclick="open_sidebar()">
<i class="icon icon-menu"></i>
</a>
</section>
</header>
</div>
<div class="book-content" style="max-width: 960px; margin: 0 auto;
overflow-x: auto;
overflow-y: hidden;">
<div class="book-post">
<p id="tip" align="center"></p>
<div><h1>33 实战Redis 性能测试</h1>
<h3>为什么需要性能测试?</h3>
<p>性能测试的使用场景有很多,例如以下几个:</p>
<ol>
<li>技术选型,比如测试 Memcached 和 Redis</li>
<li>对比单机 Redis 和集群 Redis 的吞吐量;</li>
<li>评估不同类型的存储性能,例如集合和有序集合;</li>
<li>对比开启持久化和关闭持久化的吞吐量;</li>
<li>对比调优和未调优的吞吐量;</li>
<li>对比不同 Redis 版本的吞吐量,作为是否升级的一个参考标准。</li>
</ol>
<p>等等,诸如此类的情况,我们都需要进行性能测试。</p>
<h3>性能测试的几种方式</h3>
<p>既然性能测试使用场景那么多,那要怎么进行性能测试呢?</p>
<p>目前比较主流的性能测试分为两种:</p>
<ol>
<li>编写代码模拟并发进行性能测试;</li>
<li>使用 redis-benchmark 进行测试。</li>
</ol>
<p>因为自己编写代码进行性能测试的方式不够灵活,且很难短时间内模拟大量的并发数,所有作者并不建议使用这种方式。幸运的是 Redis 本身给我们提供了性能测试工具 redis-benchmarkRedis 基准测试),因此我们本文重点来介绍 redis-benchmark 的使用。</p>
<h3>基准测试实战</h3>
<p>redis-benchmark 位于 Redis 的 src 目录下,我们可以使用 <code>./redis-benchmark -h</code> 来查看基准测试的使用,执行结果如下:</p>
<pre><code class="language-shell">Usage: redis-benchmark [-h &lt;host&gt;] [-p &lt;port&gt;] [-c &lt;clients&gt;] [-n &lt;requests&gt;] [-k &lt;boolean&gt;]
-h &lt;hostname&gt; Server hostname (default 127.0.0.1)
-p &lt;port&gt; Server port (default 6379)
-s &lt;socket&gt; Server socket (overrides host and port)
-a &lt;password&gt; Password for Redis Auth
-c &lt;clients&gt; Number of parallel connections (default 50)
-n &lt;requests&gt; Total number of requests (default 100000)
-d &lt;size&gt; Data size of SET/GET value in bytes (default 3)
--dbnum &lt;db&gt; SELECT the specified db number (default 0)
-k &lt;boolean&gt; 1=keep alive 0=reconnect (default 1)
-r &lt;keyspacelen&gt; Use random keys for SET/GET/INCR, random values for SADD
Using this option the benchmark will expand the string __rand_int__
inside an argument with a 12 digits number in the specified range
from 0 to keyspacelen-1. The substitution changes every time a command
is executed. Default tests use this to hit random keys in the
specified range.
-P &lt;numreq&gt; Pipeline &lt;numreq&gt; requests. Default 1 (no pipeline).
-e If server replies with errors, show them on stdout.
(no more than 1 error per second is displayed)
-q Quiet. Just show query/sec values
--csv Output in CSV format
-l Loop. Run the tests forever
-t &lt;tests&gt; Only run the comma separated list of tests. The test
names are the same as the ones produced as output.
-I Idle mode. Just open N idle connections and wait.
</code></pre>
<p>可以看出 redis-benchmark 支持以下选项:</p>
<ul>
<li><code>-h &lt;hostname&gt;</code>:服务器的主机名(默认值为 127.0.0.1)。</li>
<li><code>-p &lt;port&gt;</code>:服务器的端口号(默认值为 6379</li>
<li><code>-s &lt;socket&gt;</code>:服务器的套接字(会覆盖主机名和端口号)。</li>
<li><code>-a &lt;password&gt;</code>:登录 Redis 时进行身份验证的密码。</li>
<li><code>-c &lt;clients&gt;</code>:并发的连接数量(默认值为 50</li>
<li><code>-n &lt;requests&gt;</code>:发出的请求总数(默认值为 100000</li>
<li><code>-d &lt;size&gt;</code>SET/GET 命令所操作的值的数据大小,以字节为单位(默认值为 2</li>
<li><code>dbnum &lt;db&gt;</code>:选择用于性能测试的数据库的编号(默认值为 0</li>
<li><code>-k &lt;boolean&gt;</code>1 = 保持连接0 = 重新连接(默认值为 1</li>
<li><code>-r &lt;keyspacelen&gt;</code>SET/GET/INCR 命令使用随机键SADD 命令使用随机值。通过这个选项,基准测试会将参数中的 <code>__rand_int__</code> 字符串替换为一个 12 位的整数,这个整数的取值范围从 0 到 keyspacelen-1。每次执行一条命令的时候用于替换的整数值都会改变。通过这个参数默认的测试方案会在指定范围之内尝试命中随机键。</li>
<li><code>-P &lt;numreq&gt;</code>:使用管道机制处理 <code>&lt;numreq&gt;</code> 条 Redis 请求。默认值为 1不使用管道机制</li>
<li><code>-q</code>:静默测试,只显示 QPS 的值。</li>
<li><code>csv</code>:将测试结果输出为 CSV 格式的文件。</li>
<li><code>-l</code>:循环测试。基准测试会永远运行下去。</li>
<li><code>-t &lt;tests&gt;</code>:基准测试只会运行列表中用逗号分隔的命令。测试命令的名称和结果输出产生的名称相同。</li>
<li><code>-I</code>:空闲模式,只会打开 N 个空闲的连接,然后等待。</li>
</ul>
<p>可以看出 redis-benchmark 带的功能还是比较全的。</p>
<h4><strong>基本使用</strong></h4>
<p>在安装 Redis 服务端的机器上,我们可以不带任何参数直接执行 <code>./redis-benchmark</code> 执行结果如下:</p>
<pre><code class="language-shell">[@iZ2ze0nc5n41zomzyqtksmZ:src]$ ./redis-benchmark
====== PING_INLINE ======
100000 requests completed in 1.26 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.81% &lt;= 1 milliseconds
100.00% &lt;= 2 milliseconds
79302.14 requests per second
====== PING_BULK ======
100000 requests completed in 1.29 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.83% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
77459.34 requests per second
====== SET ======
100000 requests completed in 1.26 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.80% &lt;= 1 milliseconds
99.99% &lt;= 2 milliseconds
100.00% &lt;= 2 milliseconds
79239.30 requests per second
====== GET ======
100000 requests completed in 1.19 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.72% &lt;= 1 milliseconds
99.95% &lt;= 15 milliseconds
100.00% &lt;= 16 milliseconds
100.00% &lt;= 16 milliseconds
84104.29 requests per second
====== INCR ======
100000 requests completed in 1.17 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.86% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
85397.09 requests per second
====== LPUSH ======
100000 requests completed in 1.22 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.79% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
82169.27 requests per second
====== RPUSH ======
100000 requests completed in 1.22 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.71% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
81900.09 requests per second
====== LPOP ======
100000 requests completed in 1.29 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.78% &lt;= 1 milliseconds
99.95% &lt;= 13 milliseconds
99.97% &lt;= 14 milliseconds
100.00% &lt;= 14 milliseconds
77399.38 requests per second
====== RPOP ======
100000 requests completed in 1.25 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.82% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
80192.46 requests per second
====== SADD ======
100000 requests completed in 1.25 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.74% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
80192.46 requests per second
====== HSET ======
100000 requests completed in 1.21 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.86% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
82440.23 requests per second
====== SPOP ======
100000 requests completed in 1.22 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.92% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
81699.35 requests per second
====== LPUSH (needed to benchmark LRANGE) ======
100000 requests completed in 1.26 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.69% &lt;= 1 milliseconds
99.95% &lt;= 13 milliseconds
99.99% &lt;= 14 milliseconds
100.00% &lt;= 14 milliseconds
79176.56 requests per second
====== LRANGE_100 (first 100 elements) ======
100000 requests completed in 1.25 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.57% &lt;= 1 milliseconds
99.98% &lt;= 2 milliseconds
100.00% &lt;= 2 milliseconds
80128.20 requests per second
====== LRANGE_300 (first 300 elements) ======
100000 requests completed in 1.25 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.91% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
80064.05 requests per second
====== LRANGE_500 (first 450 elements) ======
100000 requests completed in 1.30 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.78% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
76863.95 requests per second
====== LRANGE_600 (first 600 elements) ======
100000 requests completed in 1.20 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.85% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
83263.95 requests per second
====== MSET (10 keys) ======
100000 requests completed in 1.27 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.65% &lt;= 1 milliseconds
100.00% &lt;= 1 milliseconds
78740.16 requests per second
</code></pre>
<p>可以看出以上都是对常用的方法 Set、Get、Incr 等进行测试,基本能达到每秒 8W 的处理级别。</p>
<h4><strong>精简测试</strong></h4>
<p>我们可以使用 <code>./redis-benchmark -t set,get,incr -n 1000000 -q</code> 命令,来对 Redis 服务器进行精简测试,测试结果如下:</p>
<pre><code class="language-shell">[@iZ2ze0nc5n41zomzyqtksmZ:src]$ ./redis-benchmark -t set,get,incr -n 1000000 -q
SET: 81726.05 requests per second
GET: 81466.40 requests per second
INCR: 82481.03 requests per second
</code></pre>
<p>可以看出以上测试展示的结果非常的精简,这是因为我们设置了 <code>-q</code> 参数,此选项的意思是设置输出结果为精简模式,其中 <code>-t</code> 表示指定测试指令,<code>-n</code> 设置每个指令测试 100w 次。</p>
<h4><strong>管道测试</strong></h4>
<p>本课程的前面章节介绍了 Pipeline管道的知识它是用于客户端把命令批量发给服务器端执行的以此来提高程序的整体执行效率那接下来我们测试一下 Pipeline 的吞吐量能到达多少,执行命令如下:</p>
<pre><code class="language-shell">[@iZ2ze0nc5n41zomzyqtksmZ:src]$ ./redis-benchmark -t set,get,incr -n 1000000 -q -P 10
SET: 628535.50 requests per second
GET: 654450.25 requests per second
INCR: 647249.19 requests per second
</code></pre>
<p>我们发现 Pipeline 的测试很快就执行完了,同样是每个指令执行 100w 次,可以看出 Pipeline 的性能几乎是普通命令的 8 倍, <code>-P 10</code> 表示每次执行 10 个 Redis 命令。</p>
<h3>基准测试的影响元素</h3>
<p>为什么每次执行 10 个 Redis 命令Pipeline 的效率为什么达不到普通命令的 10 倍呢?</p>
<p>这是因为基准测试会受到很大外部因素的影响,例如以下几个:</p>
<ol>
<li>网络带宽和网络延迟可能是 Redis 操作最大的性能瓶颈,比如有 10w q/s平均每个请求负责传输 8 KB 的字符,那我们需要的理论带宽是 7.6 Gbits/s如果服务器配置的是 1 Gbits/s那么一定会有很多信息在排队等候传输因此运行效率可想而知这也是很多 Redis 生产坏境之所以效率不高的原因;</li>
<li>CPU 可能是 Redis 运行的另一个重要的影响因素,如果 CPU 的计算能力跟不上 Redis 要求的话,也会影响 Redis 的运行效率;</li>
<li>如果 Redis 运行在虚拟设备上,性能也会受影响,因为普通操作在虚拟设备上会有额外的消耗;</li>
<li>普通操作和批量操作Pipeline对 Redis 的吞吐量也有很大的影响。</li>
</ol>
<h3>小结</h3>
<p>本文介绍了 Redis 自带的性能测试工具 redis-benchmark 也是 Redis 主流的性能测试工具,我们可以轻松模拟指定并发量和指定命令的测试条件,也可以模拟管道测试。测试的结果对于我们做技术选型、版本选择以及数据类型的选择上都有一定的指导意义,但需要注意 Redis 的吞吐量还受到其他因素的影响例如带宽、CPU 等因素。</p>
</div>
</div>
<div>
<div style="float: left">
<a href="/专栏/Redis 核心原理与实战/32 实战RediSearch 高性能的全文搜索引擎.md">上一页</a>
</div>
<div style="float: right">
<a href="/专栏/Redis 核心原理与实战/34 实战Redis 慢查询.md">下一页</a>
</div>
</div>
</div>
</div>
</div>
</div>
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
</div>
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"709973f85b2f3d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
</body>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-NPSEEVD756');
var path = window.location.pathname
var cookie = getCookie("lastPath");
console.log(path)
if (path.replace("/", "") === "") {
if (cookie.replace("/", "") !== "") {
console.log(cookie)
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
}
} else {
setCookie("lastPath", path)
}
function setCookie(cname, cvalue) {
var d = new Date();
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
var expires = "expires=" + d.toGMTString();
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
}
function getCookie(cname) {
var name = cname + "=";
var ca = document.cookie.split(';');
for (var i = 0; i < ca.length; i++) {
var c = ca[i].trim();
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
}
return "";
}
</script>
</html>