mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-27 05:36:42 +08:00
373 lines
33 KiB
HTML
373 lines
33 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>47 SSD硬盘(下):如何完成性能优化的KPI?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/00 开篇词 为什么你需要学习计算机组成原理?.md.html">00 开篇词 为什么你需要学习计算机组成原理?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/01 冯·诺依曼体系结构:计算机组成的金字塔.md.html">01 冯·诺依曼体系结构:计算机组成的金字塔</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">02 给你一张知识地图,计算机组成原理应该这么学</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html">03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">04 穿越功耗墙,我们该从哪些方面提升“性能”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/05 计算机指令:让我们试试用纸带编程.md.html">05 计算机指令:让我们试试用纸带编程</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/06 指令跳转:原来if...else就是goto.md.html">06 指令跳转:原来if...else就是goto</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/07 函数调用:为什么会发生stack overflow?.md.html">07 函数调用:为什么会发生stack overflow?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html">08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/09 程序装载:“640K内存”真的不够用么?.md.html">09 程序装载:“640K内存”真的不够用么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/10 动态链接:程序内部的“共享单车”.md.html">10 动态链接:程序内部的“共享单车”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html">11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html">12 理解电路:从电报机到门电路,我们如何做到“千里传信”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/13 加法器:如何像搭乐高一样搭电路(上)?.md.html">13 加法器:如何像搭乐高一样搭电路(上)?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/14 乘法器:如何像搭乐高一样搭电路(下)?.md.html">14 乘法器:如何像搭乐高一样搭电路(下)?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html">15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html">16 浮点数和定点数(下):深入理解浮点数到底有什么用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/17 建立数据通路(上):指令加运算=CPU.md.html">17 建立数据通路(上):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/18 建立数据通路(中):指令加运算=CPU.md.html">18 建立数据通路(中):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/19 建立数据通路(下):指令加运算=CPU.md.html">19 建立数据通路(下):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/20 面向流水线的指令设计(上):一心多用的现代CPU.md.html">20 面向流水线的指令设计(上):一心多用的现代CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html">21 面向流水线的指令设计(下):奔腾4是怎么失败的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/22 冒险和预测(一):hazard是“危”也是“机”.md.html">22 冒险和预测(一):hazard是“危”也是“机”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/23 冒险和预测(二):流水线里的接力赛.md.html">23 冒险和预测(二):流水线里的接力赛</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/24 冒险和预测(三):CPU里的“线程池”.md.html">24 冒险和预测(三):CPU里的“线程池”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">25 冒险和预测(四):今天下雨了,明天还会下雨么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html">26 Superscalar和VLIW:如何让CPU的吞吐率超过1?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">27 SIMD:如何加速矩阵乘法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/28 异常和中断:程序出错了怎么办?.md.html">28 异常和中断:程序出错了怎么办?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">29 CISC和RISC:为什么手机芯片都是ARM?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/30 GPU(上):为什么玩游戏需要使用GPU?.md.html">30 GPU(上):为什么玩游戏需要使用GPU?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/31 GPU(下):为什么深度学习需要使用GPU?.md.html">31 GPU(下):为什么深度学习需要使用GPU?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html">32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/33 解读TPU:设计和拆解一块ASIC芯片.md.html">33 解读TPU:设计和拆解一块ASIC芯片</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html">34 理解虚拟机:你在云上拿到的计算机是什么样的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html">35 存储器层次结构全景:数据存储的大金字塔长什么样?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html">36 局部性原理:数据库性能跟不上,加个缓存就好了?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html">37 理解CPU Cache(上):“4毫秒”究竟值多少钱?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/38 高速缓存(下):你确定你的数据更新了么?.md.html">38 高速缓存(下):你确定你的数据更新了么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html">39 MESI协议:如何让多核CPU的高速缓存保持一致?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/40 理解内存(上):虚拟内存和内存保护是什么?.md.html">40 理解内存(上):虚拟内存和内存保护是什么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/41 理解内存(下):解析TLB和内存保护.md.html">41 理解内存(下):解析TLB和内存保护</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/42 总线:计算机内部的高速公路.md.html">42 总线:计算机内部的高速公路</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html">43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html">44 理解IO_WAIT:IO性能到底是怎么回事儿?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/45 机械硬盘:Google早期用过的“黑科技”.md.html">45 机械硬盘:Google早期用过的“黑科技”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">46 SSD硬盘(上):如何完成性能优化的KPI?</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/深入浅出计算机组成原理/47 SSD硬盘(下):如何完成性能优化的KPI?.md.html">47 SSD硬盘(下):如何完成性能优化的KPI?</a>
|
||
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">48 DMA:为什么Kafka这么快?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/49 数据完整性(上):硬件坏了怎么办?.md.html">49 数据完整性(上):硬件坏了怎么办?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/50 数据完整性(下):如何还原犯罪现场?.md.html">50 数据完整性(下):如何还原犯罪现场?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/51 分布式计算:如果所有人的大脑都联网会怎样?.md.html">51 分布式计算:如果所有人的大脑都联网会怎样?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html">53 设计大型DMP系统(下):SSD拯救了所有的DBA</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html">55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">结束语 知也无涯,愿你也享受发现的乐趣</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>47 SSD硬盘(下):如何完成性能优化的KPI?</h1>
|
||
<p>如果你平时用的是 Windows 电脑,你会发现,用了 SSD 的系统盘,就不能用磁盘碎片整理功能。这是因为,一旦主动去运行磁盘碎片整理功能,就会发生一次块的擦除,对应块的寿命就少了一点点。这个 SSD 的擦除寿命的问题,不仅会影响像磁盘碎片整理这样的功能,其实也很影响我们的日常使用。</p>
|
||
<p>我们的操作系统上,并没有 SSD 硬盘上各个块目前已经擦写的情况和寿命,所以它对待 SSD 硬盘和普通的机械硬盘没有什么区别。</p>
|
||
<p>我们日常使用 PC 进行软件开发的时候,会先在硬盘上装上操作系统和常用软件,比如 Office,或者工程师们会装上 VS Code、WebStorm 这样的集成开发环境。这些软件所在的块,写入一次之后,就不太会擦除了,所以就只有读的需求。</p>
|
||
<p>一旦开始开发,我们就会不断添加新的代码文件,还会不断修改已经有的代码文件。因为 SSD 硬盘没有覆写(Override)的功能,所以,这个过程中,其实我们是在反复地写入新的文件,然后再把原来的文件标记成逻辑上删除的状态。等 SSD 里面空的块少了,我们会用“垃圾回收”的方式,进行擦除。这样,我们的擦除会反复发生在这些用来存放数据的地方。</p>
|
||
<p><img src="assets/09a9566eae60610b0f49d7e24ce4ee6e.jpeg" alt="img" /></p>
|
||
<p>有一天,这些块的擦除次数到了,变成了坏块。但是,我们安装操作系统和软件的地方还没有坏,而这块硬盘的可以用的容量却变小了。</p>
|
||
<h2>磨损均衡、TRIM 和写入放大效应</h2>
|
||
<h3>FTL 和磨损均衡</h3>
|
||
<p>那么,我们有没有什么办法,不让这些坏块那么早就出现呢?我们能不能,匀出一些存放操作系统的块的擦写次数,给到这些存放数据的地方呢?</p>
|
||
<p>相信你一定想到了,其实我们要的就是想一个办法,让 SSD 硬盘各个块的擦除次数,均匀分摊到各个块上。这个策略呢,就叫作<strong>磨损均衡</strong>(Wear-Leveling)。实现这个技术的核心办法,和我们前面讲过的虚拟内存一样,就是添加一个间接层。这个间接层,就是我们上一讲给你卖的那个关子,就是 FTL 这个<strong>闪存转换层</strong>。</p>
|
||
<p><img src="assets/6e78f8da0320dc9b392b9d35ecf42091.jpeg" alt="img" /></p>
|
||
<p>就像在管理内存的时候,我们通过一个页表映射虚拟内存页和物理页一样,在 FTL 里面,存放了<strong>逻辑块地址</strong>(Logical Block Address,简称 LBA)到<strong>物理块地址</strong>(Physical Block Address,简称 PBA)的映射。</p>
|
||
<p>操作系统访问的硬盘地址,其实都是逻辑地址。只有通过 FTL 转换之后,才会变成实际的物理地址,找到对应的块进行访问。操作系统本身,不需要去考虑块的磨损程度,只要和操作机械硬盘一样来读写数据就好了。</p>
|
||
<p>操作系统所有对于 SSD 硬盘的读写请求,都要经过 FTL。FTL 里面又有逻辑块对应的物理块,所以 FTL 能够记录下来,每个物理块被擦写的次数。如果一个物理块被擦写的次数多了,FTL 就可以将这个物理块,挪到一个擦写次数少的物理块上。但是,逻辑块不用变,操作系统也不需要知道这个变化。</p>
|
||
<p>这也是我们在设计大型系统中的一个典型思路,也就是各层之间是隔离的,操作系统不需要考虑底层的硬件是什么,完全交由硬件的控制电路里面的 FTL,来管理对于实际物理硬件的写入。</p>
|
||
<h3>TRIM 指令的支持</h3>
|
||
<p>不过,操作系统不去关心实际底层的硬件是什么,在 SSD 硬盘的使用上,也会带来一个问题。这个问题就是,操作系统的逻辑层和 SSD 的逻辑层里的块状态,是不匹配的。</p>
|
||
<p>我们在操作系统里面去删除一个文件,其实并没有真的在物理层面去删除这个文件,只是在文件系统里面,把对应的 inode 里面的元信息清理掉,这代表这个 inode 还可以继续使用,可以写入新的数据。这个时候,实际物理层面的对应的存储空间,在操作系统里面被标记成可以写入了。</p>
|
||
<p>所以,其实我们日常的文件删除,都只是一个操作系统层面的逻辑删除。这也是为什么,很多时候我们不小心删除了对应的文件,我们可以通过各种恢复软件,把数据找回来。同样的,这也是为什么,如果我们想要删除干净数据,需要用各种“文件粉碎”的功能才行。</p>
|
||
<p>这个删除的逻辑在机械硬盘层面没有问题,因为文件被标记成可以写入,后续的写入可以直接覆写这个位置。但是,在 SSD 硬盘上就不一样了。我在这里放了一张详细的示意图。我们下面一起来看看具体是怎么回事儿。</p>
|
||
<p><img src="assets/72b3fc74ff567e7a0ec1f4071da946d7.jpeg" alt="img" /></p>
|
||
<p>一开始,操作系统里面有好几个文件,不同的文件我用不同的颜色标记出来了。下面的 SSD 的逻辑块里面占用的页,我们也用同样的颜色标记出来文件占用的对应页。</p>
|
||
<p>当我们在操作系统里面,删除掉一个刚刚下载的文件,比如标记成黄色 openjdk.exe 这样一个 jdk 的安装文件,在操作系统里面,对应的 inode 里面,就没有文件的元信息。</p>
|
||
<p>但是,这个时候,我们的 SSD 的逻辑块层面,其实并不知道这个事情。所以在,逻辑块层面,openjdk.exe 仍然是占用了对应的空间。对应的物理页,也仍然被认为是被占用了的。</p>
|
||
<p>这个时候,如果我们需要对 SSD 进行垃圾回收操作,openjdk.exe 对应的物理页,仍然要在这个过程中,被搬运到其他的 Block 里面去。只有当操作系统,再在刚才的 inode 里面写入数据的时候,我们才会知道原来的些黄色的页,其实都已经没有用了,我们才会把它标记成废弃掉。</p>
|
||
<p>所以,在使用 SSD 的硬盘情况下,你会发现,操作系统对于文件的删除,SSD 硬盘其实并不知道。这就导致,我们为了磨损均衡,很多时候在都在搬运很多已经删除了的数据。这就会产生很多不必要的数据读写和擦除,既消耗了 SSD 的性能,也缩短了 SSD 的使用寿命。</p>
|
||
<p>为了解决这个问题,现在的操作系统和 SSD 的主控芯片,都支持**TRIM 命令。**这个命令可以在文件被删除的时候,让操作系统去通知 SSD 硬盘,对应的逻辑块已经标记成已删除了。现在的 SSD 硬盘都已经支持了 TRIM 命令。无论是 Linux、Windows 还是 MacOS,这些操作系统也都已经支持了 TRIM 命令了。</p>
|
||
<h3>写入放大</h3>
|
||
<p>其实,TRIM 命令的发明,也反应了一个使用 SSD 硬盘的问题,那就是,SSD 硬盘容易越用越慢。</p>
|
||
<p>当 SSD 硬盘的存储空间被占用得越来越多,每一次写入新数据,我们都可能没有足够的空白。我们可能不得不去进行垃圾回收,合并一些块里面的页,然后再擦除掉一些页,才能匀出一些空间来。</p>
|
||
<p>这个时候,从应用层或者操作系统层面来看,我们可能只是写入了一个 4KB 或者 4MB 的数据。但是,实际通过 FTL 之后,我们可能要去搬运 8MB、16MB 甚至更多的数据。</p>
|
||
<p>我们通过“<strong>实际的闪存写入的数据量 / 系统通过 FTL 写入的数据量 = 写入放大</strong>”,可以得到,写入放大的倍数越多,意味着实际的 SSD 性能也就越差,会远远比不上实际 SSD 硬盘标称的指标。</p>
|
||
<p>而解决写入放大,需要我们在后台定时进行垃圾回收,在硬盘比较空闲的时候,就把搬运数据、擦除数据、留出空白的块的工作做完,而不是等实际数据写入的时候,再进行这样的操作。</p>
|
||
<h2>AeroSpike:如何最大化 SSD 的使用效率?</h2>
|
||
<p>讲到这里,相信你也发现了,想要把 SSD 硬盘用好,其实没有那么简单。如果我们只是简单地拿一块 SSD 硬盘替换掉原来的 HDD 硬盘,而不是从应用层面考虑任何 SSD 硬盘特性的话,我们多半还是没法获得想要的性能提升。</p>
|
||
<p>不过,既然清楚了 SSD 硬盘的各种特性,我们就可以依据这些特性,来设计我们的应用。接下来,我就带你一起看一看,AeroSpike 这个专门针对 SSD 硬盘特性设计的 Key-Value 数据库(键值对数据库),是怎么利用这些物理特性的。</p>
|
||
<p>首先,AeroSpike 操作 SSD 硬盘,并没有通过操作系统的文件系统。而是直接操作 SSD 里面的块和页。因为操作系统里面的文件系统,对于 KV 数据库来说,只是让我们多了一层间接层,只会降低性能,对我们没有什么实际的作用。</p>
|
||
<p>其次,AeroSpike 在读写数据的时候,做了两个优化。在写入数据的时候,AeroSpike 尽可能去写一个较大的数据块,而不是频繁地去写很多小的数据块。这样,硬盘就不太容易频繁出现磁盘碎片。并且,一次性写入一个大的数据块,也更容易利用好顺序写入的性能优势。AeroSpike 写入的一个数据块,是 128KB,远比一个页的 4KB 要大得多。</p>
|
||
<p>另外,在读取数据的时候,AeroSpike 倒是可以读取 512 字节(Bytes)这样的小数据。因为 SSD 的随机读取性能很好,也不像写入数据那样有擦除寿命问题。而且,很多时候我们读取的数据是键值对里面的值的数据,这些数据要在网络上传输。如果一次性必须读出比较大的数据,就会导致我们的网络带宽不够用。</p>
|
||
<p>因为 AeroSpike 是一个对于响应时间要求很高的实时 KV 数据库,如果出现了严重的写放大效应,会导致写入数据的响应时间大幅度变长。所以 AeroSpike 做了这样几个动作:</p>
|
||
<p>第一个是持续地进行磁盘碎片整理。AeroSpike 用了所谓的高水位(High Watermark)算法。其实这个算法很简单,就是一旦一个物理块里面的数据碎片超过 50%,就把这个物理块搬运压缩,然后进行数据擦除,确保磁盘始终有足够的空间可以写入。</p>
|
||
<p>第二个是在 AeroSpike 给出的最佳实践中,为了保障数据库的性能,建议你只用到 SSD 硬盘标定容量的一半。也就是说,我们人为地给 SSD 硬盘预留了 50% 的预留空间,以确保 SSD 硬盘的写放大效应尽可能小,不会影响数据库的访问性能。</p>
|
||
<p><img src="assets/354d34d871dda3ef5a4792a1fe1fb860.jpeg" alt="img" /></p>
|
||
<p>正是因为做了这种种的优化,在 NoSQL 数据库刚刚兴起的时候,AeroSpike 的性能把 Cassandra、MongoDB 这些数据库远远甩在身后,和这些数据库之间的性能差距,有时候会到达一个数量级。这也让 AeroSpike 成为了当时高性能 KV 数据库的标杆。你可以看一看 InfoQ 出的这个<a href="https://www.infoq.com/news/2013/04/NoSQL-Benchmark/">Benchmark</a>,里面有 2013 年的时候,这几个 NoSQL 数据库巨大的性能差异。</p>
|
||
<h2>总结延伸</h2>
|
||
<p>好了,现在让我们一起来总结一下今天的内容。</p>
|
||
<p>因为 SSD 硬盘的使用寿命,受限于块的擦除次数,所以我们需要通过一个磨损均衡的策略,来管理 SSD 硬盘的各个块的擦除次数。我们通过在逻辑块地址和物理块地址之间,引入 FTL 这个映射层,使得操作系统无需关心物理块的擦写次数,而是由 FTL 里的软件算法,来协调到底每一次写入应该磨损哪一块。</p>
|
||
<p>除了磨损均衡之外,操作系统和 SSD 硬件的特性还有一个不匹配的地方。那就是,操作系统在删除数据的时候,并没有真的删除物理层面的数据,而只是修改了 inode 里面的数据。这个“伪删除”,使得 SSD 硬盘在逻辑和物理层面,都没有意识到有些块其实已经被删除了。这就导致在垃圾回收的时候,会浪费很多不必要的读写资源。</p>
|
||
<p>SSD 这个需要进行垃圾回收的特性,使得我们在写入数据的时候,会遇到写入放大。明明我们只是写入了 4MB 的数据,可能在 SSD 的硬件层面,实际写入了 8MB、16MB 乃至更多的数据。</p>
|
||
<p>针对这些特性,AeroSpike,这个专门针对 SSD 硬盘特性的 KV 数据库,设计了很多的优化点,包括跳过文件系统直写硬盘、写大块读小块、用高水位算法持续进行磁盘碎片整理,以及只使用 SSD 硬盘的一半空间。这些策略,使得 AeroSpike 的性能,在早年间远远超过了 Cassandra 等其他 NoSQL 数据库。</p>
|
||
<p>可以看到,针对硬件特性设计的软件,才能最大化发挥我们的硬件性能。</p>
|
||
<h2>推荐阅读</h2>
|
||
<p>如果你想要基于 SSD 硬盘本身的特性来设计开发你的系统,我推荐你去读一读 AeroSpike 的这个<a href="https://www.slideshare.net/AerospikeDB/getting-the-most-out-of-your-flashssds">PPT</a>。AeroSpike 是市面上最优秀的 KV 数据库之一,通过深入地利用了 SSD 本身的硬件特性,最大化提升了作为一个 KV 数据库的性能。真正在进行系统软件开发的时候,了解硬件是必不可少的一个环节。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997aef9c283cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|