mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 13:16:41 +08:00
379 lines
36 KiB
HTML
379 lines
36 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/00 开篇词 为什么你需要学习计算机组成原理?.md.html">00 开篇词 为什么你需要学习计算机组成原理?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/01 冯·诺依曼体系结构:计算机组成的金字塔.md.html">01 冯·诺依曼体系结构:计算机组成的金字塔</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">02 给你一张知识地图,计算机组成原理应该这么学</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html">03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">04 穿越功耗墙,我们该从哪些方面提升“性能”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/05 计算机指令:让我们试试用纸带编程.md.html">05 计算机指令:让我们试试用纸带编程</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/06 指令跳转:原来if...else就是goto.md.html">06 指令跳转:原来if...else就是goto</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/07 函数调用:为什么会发生stack overflow?.md.html">07 函数调用:为什么会发生stack overflow?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html">08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/09 程序装载:“640K内存”真的不够用么?.md.html">09 程序装载:“640K内存”真的不够用么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/10 动态链接:程序内部的“共享单车”.md.html">10 动态链接:程序内部的“共享单车”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html">11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html">12 理解电路:从电报机到门电路,我们如何做到“千里传信”?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/13 加法器:如何像搭乐高一样搭电路(上)?.md.html">13 加法器:如何像搭乐高一样搭电路(上)?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/14 乘法器:如何像搭乐高一样搭电路(下)?.md.html">14 乘法器:如何像搭乐高一样搭电路(下)?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html">15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html">16 浮点数和定点数(下):深入理解浮点数到底有什么用?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/17 建立数据通路(上):指令加运算=CPU.md.html">17 建立数据通路(上):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/18 建立数据通路(中):指令加运算=CPU.md.html">18 建立数据通路(中):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/19 建立数据通路(下):指令加运算=CPU.md.html">19 建立数据通路(下):指令加运算=CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/20 面向流水线的指令设计(上):一心多用的现代CPU.md.html">20 面向流水线的指令设计(上):一心多用的现代CPU</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html">21 面向流水线的指令设计(下):奔腾4是怎么失败的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/22 冒险和预测(一):hazard是“危”也是“机”.md.html">22 冒险和预测(一):hazard是“危”也是“机”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/23 冒险和预测(二):流水线里的接力赛.md.html">23 冒险和预测(二):流水线里的接力赛</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/24 冒险和预测(三):CPU里的“线程池”.md.html">24 冒险和预测(三):CPU里的“线程池”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">25 冒险和预测(四):今天下雨了,明天还会下雨么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html">26 Superscalar和VLIW:如何让CPU的吞吐率超过1?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">27 SIMD:如何加速矩阵乘法?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/28 异常和中断:程序出错了怎么办?.md.html">28 异常和中断:程序出错了怎么办?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">29 CISC和RISC:为什么手机芯片都是ARM?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/30 GPU(上):为什么玩游戏需要使用GPU?.md.html">30 GPU(上):为什么玩游戏需要使用GPU?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/31 GPU(下):为什么深度学习需要使用GPU?.md.html">31 GPU(下):为什么深度学习需要使用GPU?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html">32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/33 解读TPU:设计和拆解一块ASIC芯片.md.html">33 解读TPU:设计和拆解一块ASIC芯片</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html">34 理解虚拟机:你在云上拿到的计算机是什么样的?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html">35 存储器层次结构全景:数据存储的大金字塔长什么样?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html">36 局部性原理:数据库性能跟不上,加个缓存就好了?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html">37 理解CPU Cache(上):“4毫秒”究竟值多少钱?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/38 高速缓存(下):你确定你的数据更新了么?.md.html">38 高速缓存(下):你确定你的数据更新了么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html">39 MESI协议:如何让多核CPU的高速缓存保持一致?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/40 理解内存(上):虚拟内存和内存保护是什么?.md.html">40 理解内存(上):虚拟内存和内存保护是什么?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/41 理解内存(下):解析TLB和内存保护.md.html">41 理解内存(下):解析TLB和内存保护</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/42 总线:计算机内部的高速公路.md.html">42 总线:计算机内部的高速公路</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html">43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html">44 理解IO_WAIT:IO性能到底是怎么回事儿?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/45 机械硬盘:Google早期用过的“黑科技”.md.html">45 机械硬盘:Google早期用过的“黑科技”</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">46 SSD硬盘(上):如何完成性能优化的KPI?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/47 SSD硬盘(下):如何完成性能优化的KPI?.md.html">47 SSD硬盘(下):如何完成性能优化的KPI?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">48 DMA:为什么Kafka这么快?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/49 数据完整性(上):硬件坏了怎么办?.md.html">49 数据完整性(上):硬件坏了怎么办?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/50 数据完整性(下):如何还原犯罪现场?.md.html">50 数据完整性(下):如何还原犯罪现场?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/51 分布式计算:如果所有人的大脑都联网会怎样?.md.html">51 分布式计算:如果所有人的大脑都联网会怎样?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/深入浅出计算机组成原理/53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html">53 设计大型DMP系统(下):SSD拯救了所有的DBA</a>
|
||
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html">55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?</a>
|
||
</li>
|
||
<li>
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">结束语 知也无涯,愿你也享受发现的乐趣</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>53 设计大型DMP系统(下):SSD拯救了所有的DBA</h1>
|
||
<p>上一讲里,根据 DMP 系统的各个应用场景,我们从抽象的原理层面,选择了 AeroSpike 作为 KV 数据库,Kafka 作为数据管道,Hadoop/Hive 来作为数据仓库。</p>
|
||
<p>不过呢,肯定有不信邪的工程师会问,为什么 MongoDB,甚至是 MySQL 这样的文档数据库或者传统的关系型数据库不适用呢?为什么不能通过优化 SQL、添加缓存这样的调优手段,解决这个问题呢?</p>
|
||
<p>今天 DMP 的下半场,我们就从数据库实现的原理,一起来看一看,这背后的原因。如果你能弄明白今天的这些更深入、更细节的原理,对于什么场景使用什么数据库,就会更加胸有成竹,而不是只有跑了大量的性能测试才知道。下次做数据库选型的时候,你就可以“以理服人”了。</p>
|
||
<h2>关系型数据库:不得不做的随机读写</h2>
|
||
<p>我们先来想一想,如果现在让你自己写一个最简单的关系型数据库,你的数据要怎么存放在硬盘上?</p>
|
||
<p>最简单最直观的想法是,用一个 CSV 文件格式。一个文件就是一个数据表。文件里面的每一行就是这个表里面的一条记录。如果要修改数据库里面的某一条记录,那么我们要先找到这一行,然后直接去修改这一行的数据。读取数据也是一样的。</p>
|
||
<p>要找到这样数据,最笨的办法自然是一行一行读,也就是遍历整个 CSV 文件。不过这样的话,相当于随便读取任何一条数据都要扫描全表,太浪费硬盘的吞吐量了。那怎么办呢?我们可以试试给这个 CSV 文件加一个索引。比如,给数据的行号加一个索引。如果你学过数据库原理或者算法和数据结构,那你应该知道,通过 B+ 树多半是可以来建立这样一个索引的。</p>
|
||
<p>索引里面没有一整行的数据,只有一个映射关系,这个映射关系可以让行号直接从硬盘的某个位置去读。所以,索引比起数据小很多。我们可以把索引加载到内存里面。即使不在内存里面,要找数据的时候快速遍历一下整个索引,也不需要读太多的数据。</p>
|
||
<p>加了索引之后,我们要读取特定的数据,就不用去扫描整个数据表文件了。直接从特定的硬盘位置,就可以读到想要的行。索引不仅可以索引行号,还可以索引某个字段。我们可以创建很多个不同的独立的索引。写 SQL 的时候,where 子句后面的查询条件可以用到这些索引。</p>
|
||
<p>不过,这样的话,写入数据的时候就会麻烦一些。我们不仅要在数据表里面写入数据,对于所有的索引也都需要进行更新。这个时候,写入一条数据就要触发好几个随机写入的更新。</p>
|
||
<p><img src="assets/f3c01bc2de99dbb83ad17cef1fb38a3c.jpeg" alt="img" /></p>
|
||
<p>在这样一个数据模型下,查询操作很灵活。无论是根据哪个字段查询,只要有索引,我们就可以通过一次随机读,很快地读到对应的数据。但是,这个灵活性也带来了一个很大的问题,那就是无论干点什么,都有大量的随机读写请求。而随机读写请求,如果请求最终是要落到硬盘上,特别是 HDD 硬盘的话,我们就很难做到高并发了。毕竟 HDD 硬盘只有 100 左右的 QPS。</p>
|
||
<p>而这个随时添加索引,可以根据任意字段进行查询,这样表现出的灵活性,又是我们的 DMP 系统里面不太需要的。DMP 的 KV 数据库主要的应用场景,是根据主键的随机查询,不需要根据其他字段进行筛选查询。数据管道的需求,则只需要不断追加写入和顺序读取就好了。即使进行数据分析的数据仓库,通常也不是根据字段进行数据筛选,而是全量扫描数据进行分析汇总。</p>
|
||
<p>后面的两个场景还好说,大不了我们让程序去扫描全表或者追加写入。但是,在 KV 数据库这个需求上,刚才这个最简单的关系型数据库的设计,就会面临大量的随机写入和随机读取的挑战。</p>
|
||
<p>所以,在实际的大型系统中,大家都会使用专门的分布式 KV 数据库,来满足这个需求。那么下面,我们就一起来看一看,Facebook 开源的 Cassandra 的数据存储和读写是怎么做的,这些设计是怎么解决高并发的随机读写问题的。</p>
|
||
<h2>Cassandra:顺序写和随机读</h2>
|
||
<h3>Cassandra 的数据模型</h3>
|
||
<p>作为一个分布式的 KV 数据库,Cassandra 的键一般被称为 Row Key。其实就是一个 16 到 36 个字节的字符串。每一个 Row Key 对应的值其实是一个哈希表,里面可以用键值对,再存入很多你需要的数据。</p>
|
||
<p>Cassandra 本身不像关系型数据库那样,有严格的 Schema,在数据库创建的一开始就定义好了有哪些列(Column)。但是,它设计了一个叫作列族(Column Family)的概念,我们需要把经常放在一起使用的字段,放在同一个列族里面。比如,DMP 里面的人口属性信息,我们可以把它当成是一个列族。用户的兴趣信息,可以是另外一个列族。这样,既保持了不需要严格的 Schema 这样的灵活性,也保留了可以把常常一起使用的数据存放在一起的空间局部性。</p>
|
||
<p>往 Cassandra 的里面读写数据,其实特别简单,就好像是在一个巨大的分布式的哈希表里面写数据。我们指定一个 Row Key,然后插入或者更新这个 Row Key 的数据就好了。</p>
|
||
<h3>Cassandra 的写操作</h3>
|
||
<p><img src="assets/02d58b12403f7907975e00549a008c58.jpeg" alt="img" /></p>
|
||
<p>Cassandra 只有顺序写入,没有随机写入</p>
|
||
<p>Cassandra 解决随机写入数据的解决方案,简单来说,就叫作“不随机写,只顺序写”。对于 Cassandra 数据库的写操作,通常包含两个动作。第一个是往磁盘上写入一条提交日志(Commit Log)。另一个操作,则是直接在内存的数据结构上去更新数据。后面这个往内存的数据结构里面的数据更新,只有在提交日志写成功之后才会进行。每台机器上,都有一个可靠的硬盘可以让我们去写入提交日志。写入提交日志都是顺序写(Sequential Write),而不是随机写(Random Write),这使得我们最大化了写入的吞吐量。</p>
|
||
<p>如果你不明白这是为什么,可以回到<a href="https://time.geekbang.org/column/article/118191">第 47 讲</a>,看看硬盘的性能评测。无论是 HDD 硬盘还是 SSD 硬盘,顺序写入都比随机写入要快得多。</p>
|
||
<p>内存的空间比较有限,一旦内存里面的数据量或者条目超过一定的限额,Cassandra 就会把内存里面的数据结构 dump 到硬盘上。这个 Dump 的操作,也是顺序写而不是随机写,所以性能也不会是一个问题。除了 Dump 的数据结构文件,Cassandra 还会根据 row key 来生成一个索引文件,方便后续基于索引来进行快速查询。</p>
|
||
<p>随着硬盘上的 Dump 出来的文件越来越多,Cassandra 会在后台进行文件的对比合并。在很多别的 KV 数据库系统里面,也有类似这种的合并动作,比如 AeroSpike 或者 Google 的 BigTable。这些操作我们一般称之为 Compaction。合并动作同样是顺序读取多个文件,在内存里面合并完成,再 Dump 出来一个新的文件。整个操作过程中,在硬盘层面仍然是顺序读写。</p>
|
||
<h3>Cassandra 的读操作</h3>
|
||
<p><img src="assets/68855c2861f07417bbc2eb64672d36b0.jpeg" alt="img" /></p>
|
||
<p>Cassandra 的读请求,会通过缓存、BloomFilter 进行两道过滤,尽可能避免数据请求命中硬盘</p>
|
||
<p>当我们要从 Cassandra 读数据的时候,会从内存里面找数据,再从硬盘读数据,然后把两部分的数据合并成最终结果。这些硬盘上的文件,在内存里面会有对应的 Cache,只有在 Cache 里面找不到,我们才会去请求硬盘里面的数据。</p>
|
||
<p>如果不得不访问硬盘,因为硬盘里面可能 Dump 了很多个不同时间点的内存数据的快照。所以,找数据的时候,我们也是按照时间从新的往旧的里面找。</p>
|
||
<p>这也就带来另外一个问题,我们可能要查询很多个 Dump 文件,才能找到我们想要的数据。所以,Cassandra 在这一点上又做了一个优化。那就是,它会为每一个 Dump 的文件里面所有 Row Key 生成一个 BloomFilter,然后把这个 BloomFilter 放在内存里面。这样,如果想要查询的 Row Key 在数据文件里面不存在,那么 99% 以上的情况下,它会被 BloomFilter 过滤掉,而不需要访问硬盘。</p>
|
||
<p>这样,只有当数据在内存里面没有,并且在硬盘的某个特定文件上的时候,才会触发一次对于硬盘的读请求。</p>
|
||
<h2>SSD:DBA 们的大救星</h2>
|
||
<p>Cassandra 是 Facebook 在 2008 年开源的。那个时候,SSD 硬盘还没有那么普及。可以看到,它的读写设计充分考虑了硬件本身的特性。在写入数据进行持久化上,Cassandra 没有任何的随机写请求,无论是 Commit Log 还是 Dump,全部都是顺序写。</p>
|
||
<p>在数据读的请求上,最新写入的数据都会更新到内存。如果要读取这些数据,会优先从内存读到。这相当于是一个使用了 LRU 的缓存机制。只有在万般无奈的情况下,才会有对于硬盘的随机读请求。即使在这样的情况下,Cassandra 也在文件之前加了一层 BloomFilter,把本来因为 Dump 文件带来的需要多次读硬盘的问题,简化成多次内存读和一次硬盘读。</p>
|
||
<p>这些设计,使得 Cassandra 即使是在 HDD 硬盘上,也能有不错的访问性能。因为所有的写入都是顺序写或者写入到内存,所以,写入可以做到高并发。HDD 硬盘的吞吐率还是很不错的,每秒可以写入 100MB 以上的数据,如果一条数据只有 1KB,那么 10 万的 WPS(Writes per seconds)也是能够做到的。这足够支撑我们 DMP 期望的写入压力了。</p>
|
||
<p>而对于数据的读,就有一些挑战了。如果数据读请求有很强的局部性,那我们的内存就能搞定 DMP 需要的访问量。</p>
|
||
<p>但是,问题就出在这个局部性上。DMP 的数据访问分布,其实是缺少局部性的。你仔细想一想 DMP 的应用场景就明白了。DMP 里面的 Row Key 都是用户的唯一标识符。普通用户的上网时长怎么会有局部性呢?每个人上网的时间和访问网页的次数就那么多。上网多的人,一天最多也就 24 小时。大部分用户一天也要上网 2~3 小时。我们没办法说,把这些用户的数据放在内存里面,那些用户不放。</p>
|
||
<p><img src="assets/cf55146f8cf79029af6d1f86f3de86ca.jpeg" alt="img" /></p>
|
||
<p>DMP 系统,只有根据国家和时区不同有比较明显的局部性,是局部性不强的系统</p>
|
||
<p>那么,我们可不可能有一定的时间局部性呢?如果是 Facebook 那样的全球社交网络,那可能还有一定的时间局部性。毕竟不同国家的人的时区不一样。我们可以说,在印度人民的白天,把印度人民的数据加载到内存里面,美国人民的数据就放在硬盘上。到了印度人民的晚上,再把美国人民的数据换到内存里面来。</p>
|
||
<p>如果你的主要业务是在国内,那这个时间局部性就没有了。大家的上网高峰时段,都是在早上上班路上、中午休息的时候以及晚上下班之后的时间,没有什么区分度。</p>
|
||
<p>面临这个情况,如果你们的 CEO 或者 CTO 问你,是不是可以通过优化程序来解决这个问题?如果你没有仔细从数据分布和原理的层面思考这个问题,而直接一口答应下来,那你可能之后要头疼了,因为这个问题很有可能是搞不定的。</p>
|
||
<p>因为缺少了时间局部性,我们内存的缓存能够起到的作用就很小了,大部分请求最终还是要落到 HDD 硬盘的随机读上。但是,HDD 硬盘的随机读的性能太差了,我们在<a href="https://time.geekbang.org/column/article/116104">第 45 讲</a>看过,也就是 100QPS 左右。而如果全都放内存,那就太贵了,成本在 HDD 硬盘 100 倍以上。</p>
|
||
<p>不过,幸运的是,从 2010 年开始,SSD 硬盘的大规模商用帮助我们解决了这个问题。它的价格在 HDD 硬盘的 10 倍,但是随机读的访问能力在 HDD 硬盘的百倍以上。也就是说,用上了 SSD 硬盘,我们可以用 1/10 的成本获得和 HDD 硬盘同样的 QPS。同样的价格的 SSD 硬盘,容量则是内存的几十倍,也能够满足我们的需求,用较低的成本存下整个互联网用户信息。</p>
|
||
<p>不夸张地说,过去十年的“大数据”“高并发”“千人千面”,有一半的功劳应该归在让 SSD 容量不断上升、价格不断下降的硬盘产业上。</p>
|
||
<p>回到我们看到的 Cassandra 的读写设计,你会发现,Cassandra 的写入机制完美匹配了我们在第 46 和 47 讲所说的 SSD 硬盘的优缺点。</p>
|
||
<p>在数据写入层面,Cassandra 的数据写入都是 Commit Log 的顺序写入,也就是不断地在硬盘上往后追加内容,而不是去修改现有的文件内容。一旦内存里面的数据超过一定的阈值,Cassandra 又会完整地 Dump 一个新文件到文件系统上。这同样是一个追加写入。</p>
|
||
<p>数据的对比和紧凑化(Compaction),同样是读取现有的多个文件,然后写一个新的文件出来。写入操作只追加不修改的特性,正好天然地符合 SSD 硬盘只能按块进行擦除写入的操作。在这样的写入模式下,Cassandra 用到的 SSD 硬盘,不需要频繁地进行后台的 Compaction,能够最大化 SSD 硬盘的使用寿命。这也是为什么,Cassandra 在 SSD 硬盘普及之后,能够获得进一步快速发展。</p>
|
||
<h2>总结延伸</h2>
|
||
<p>好了,关于 DMP 和存储器的内容,讲到这里就差不多了。希望今天的这一讲,能够让你从 Cassandra 的数据库实现的细节层面,彻底理解怎么运用好存储器的性能特性和原理。</p>
|
||
<p>传统的关系型数据库,我们把一条条数据存放在一个地方,同时再把索引存放在另外一个地方。这样的存储方式,其实很方便我们进行单次的随机读和随机写,数据的存储也可以很紧凑。但是问题也在于此,大部分的 SQL 请求,都会带来大量的随机读写的请求。这使得传统的关系型数据库,其实并不适合用在真的高并发的场景下。</p>
|
||
<p>我们的 DMP 需要的访问场景,其实没有复杂的索引需求,但是会有比较高的并发性。我带你一看了 Facebook 开源的 Cassandra 这个分布式 KV 数据库的读写设计。通过在追加写入 Commit Log 和更新内存,Cassandra 避开了随机写的问题。内存数据的 Dump 和后台的对比合并,同样也都避开了随机写的问题,使得 Cassandra 的并发写入性能极高。</p>
|
||
<p>在数据读取层面,通过内存缓存和 BloomFilter,Cassandra 已经尽可能地减少了需要随机读取硬盘里面数据的情况。不过挑战在于,DMP 系统的局部性不强,使得我们最终的随机读的请求还是要到硬盘上。幸运的是,SSD 硬盘在数据海量增长的那几年里价格不断下降,使得我们最终通过 SSD 硬盘解决了这个问题。</p>
|
||
<p>而 SSD 硬盘本身的擦除后才能写入的机制,正好非常适合 Cassandra 的数据读写模式,最终使得 Cassandra 在 SSD 硬盘普及之后得到了更大的发展。</p>
|
||
<h2>推荐阅读</h2>
|
||
<p>今天的推荐阅读,是一篇相关的论文。我推荐你去读一读<a href="https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf">Cassandra - A Decentralized Structured Storage System</a>。读完这篇论文,一方面你会对分布式 KV 数据库的设计原则有所了解,了解怎么去做好数据分片、故障转移、数据复制这些机制;另一方面,你可以看到基于内存和硬盘的不同存储设备的特性,Cassandra 是怎么有针对性地设计数据读写和持久化的方式的。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997afd3cd43cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|