mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-25 12:46:41 +08:00
328 lines
23 KiB
HTML
328 lines
23 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>05 栈:后进先出的线性表,如何实现增删查?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/00 数据结构与算法,应该这样学!.md.html">00 数据结构与算法,应该这样学!</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/01 复杂度:如何衡量程序运行的效率?.md.html">01 复杂度:如何衡量程序运行的效率?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/02 数据结构:将“昂贵”的时间复杂度转换成“廉价”的空间复杂度.md.html">02 数据结构:将“昂贵”的时间复杂度转换成“廉价”的空间复杂度</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/03 增删查:掌握数据处理的基本操作,以不变应万变.md.html">03 增删查:掌握数据处理的基本操作,以不变应万变</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/04 如何完成线性表结构下的增删查?.md.html">04 如何完成线性表结构下的增删查?</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/专栏/重学数据结构与算法-完/05 栈:后进先出的线性表,如何实现增删查?.md.html">05 栈:后进先出的线性表,如何实现增删查?</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/06 队列:先进先出的线性表,如何实现增删查?.md.html">06 队列:先进先出的线性表,如何实现增删查?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/07 数组:如何实现基于索引的查找?.md.html">07 数组:如何实现基于索引的查找?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/08 字符串:如何正确回答面试中高频考察的字符串匹配算法?.md.html">08 字符串:如何正确回答面试中高频考察的字符串匹配算法?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/09 树和二叉树:分支关系与层次结构下,如何有效实现增删查?.md.html">09 树和二叉树:分支关系与层次结构下,如何有效实现增删查?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/10 哈希表:如何利用好高效率查找的“利器”?.md.html">10 哈希表:如何利用好高效率查找的“利器”?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/11 递归:如何利用递归求解汉诺塔问题?.md.html">11 递归:如何利用递归求解汉诺塔问题?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/12 分治:如何利用分治法完成数据查找?.md.html">12 分治:如何利用分治法完成数据查找?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/13 排序:经典排序算法原理解析与优劣对比.md.html">13 排序:经典排序算法原理解析与优劣对比</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/14 动态规划:如何通过最优子结构,完成复杂问题求解?.md.html">14 动态规划:如何通过最优子结构,完成复杂问题求解?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/15 定位问题才能更好地解决问题:开发前的复杂度分析与技术选型.md.html">15 定位问题才能更好地解决问题:开发前的复杂度分析与技术选型</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/16 真题案例(一):算法思维训练.md.html">16 真题案例(一):算法思维训练</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/17 真题案例(二):数据结构训练.md.html">17 真题案例(二):数据结构训练</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/18 真题案例(三):力扣真题训练.md.html">18 真题案例(三):力扣真题训练</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/19 真题案例(四):大厂真题实战演练.md.html">19 真题案例(四):大厂真题实战演练</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/20 代码之外,技术面试中你应该具备哪些软素质?.md.html">20 代码之外,技术面试中你应该具备哪些软素质?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/21 面试中如何建立全局观,快速完成优质的手写代码?.md.html">21 面试中如何建立全局观,快速完成优质的手写代码?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/专栏/重学数据结构与算法-完/加餐 课后练习题详解.md.html">加餐 课后练习题详解</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>05 栈:后进先出的线性表,如何实现增删查?</h1>
|
||
<p>通过前面课时的学习,相信你已经掌握了线性表的基本原理,以及如何完成线性表结构下的增删查操作。</p>
|
||
<p>线性表是使用非常广泛的一类数据结构,它对数据的顺序非常敏感,而且它对数据的增删操作非常灵活。在有序排列的数据中,可以灵活的执行增删操作,就好像是为排好队的数据增加了插队的入口。这既是灵活性也是缺陷,原因在于它的灵活性在某种程度上破坏了数据的原始顺序。在某些需要严格遵守数据处理顺序的场景下,我们就需要对线性表予以限制了。经过限制后的线性表,它们通常会被赋予一些新的名字。这一课时,我们就来学习其中一个限制后的线性表--栈。</p>
|
||
<h3>栈是什么</h3>
|
||
<p>你需要牢记一点,栈是一种特殊的线性表。栈与线性表的不同,体现在增和删的操作。具体而言,栈的数据结点必须后进先出。后进的意思是,栈的数据新增操作只能在末端进行,不允许在栈的中间某个结点后新增数据。先出的意思是,栈的数据删除操作也只能在末端进行,不允许在栈的中间某个结点后删除数据。</p>
|
||
<p>也就是说,栈的数据新增和删除操作只能在这个线性表的表尾进行,即在线性表的基础上加了限制。如下图所示:</p>
|
||
<p><img src="assets/CgqCHl7UyyiAOqRGAACdPSEyJAw292.png" alt="1.png" /></p>
|
||
<p>因此,栈是一种后进先出的线性表。栈对于数据的处理,就像用砖头盖房子的过程。对于盖房子而言,新的砖头只能放在前一个砖头上面;而对于拆房子而言,我们需要从上往下拆砖头。</p>
|
||
<p><img src="assets/CgqCHl7UyzCAZynsAA1ztbJtHZM075.gif" alt="2.gif" /></p>
|
||
<p>宏观上来看,与数组或链表相比,栈的操作更为受限,那为什么我们要用这种受限的栈呢?其实,单纯从功能上讲,数组或者链表可以替代栈。然而问题是,数组或者链表的操作过于灵活,这意味着,它们过多暴露了可操作的接口。这些没有意义的接口过多,当数据量很大的时候就会出现一些隐藏的风险。一旦发生代码 bug 或者受到攻击,就会给系统带来不可预知的风险。虽然栈限定降低了操作的灵活性,但这也使得栈在处理只涉及一端新增和删除数据的问题时效率更高。</p>
|
||
<p>举个实际的例子,浏览器都有页面前进和后退功能,这就是个很典型的后进先出的场景。假设你先后访问了五个页面,分别标记为 1、2、3、4、5。当前你在页面 5,如果执行两次后退,则退回到了页面 3,如果再执行一次前进,则到了页面 4。处理这里的页面链接存储问题,栈就应该是我们首选的数据结构。</p>
|
||
<p><img src="assets/CgqCHl7Uy0KAVgCXAGp5lx2v7gs430.gif" alt="3.gif" /></p>
|
||
<p>栈既然是线性表,那么它也包含了表头和表尾。不过在栈结构中,由于其操作的特殊性,会对表头和表尾的名字进行改造。表尾用来输入数据,通常也叫作栈顶(top);相应地,表头就是栈底(bottom)。栈顶和栈底是用来表示这个栈的两个指针。跟线性表一样,栈也有顺序表示和链式表示,分别称作顺序栈和链栈。</p>
|
||
<h3>栈的基本操作</h3>
|
||
<p>如何通过栈这个后进先出的线性表,来实现增删查呢?初始时,栈内没有数据,即空栈。此时栈顶就是栈底。当存入数据时,最先放入的数据会进入栈底。接着加入的数据都会放入到栈顶的位置。如果要删除数据,也只能通过访问栈顶的数据并删除。对于栈的新增操作,通常也叫作 push 或压栈。对于栈的删除操作,通常也叫作 pop 或出栈。对于压栈和出栈,我们分别基于顺序栈和链栈进行讨论。</p>
|
||
<p><img src="assets/CgqCHl7Uy1mASD8_ABTJXLqysYw837.gif" alt="4.gif" /></p>
|
||
<h4>顺序栈</h4>
|
||
<p>栈的顺序存储可以借助数组来实现。一般来说,会把数组的首元素存在栈底,最后一个元素放在栈顶。然后定义一个 top 指针来指示栈顶元素在数组中的位置。假设栈中只有一个数据元素,则 top = 0。一般以 top 是否为 -1 来判定是否为空栈。当定义了栈的最大容量为 StackSize 时,则栈顶 top 必须小于 StackSize。</p>
|
||
<p>当需要新增数据元素,即入栈操作时,就需要将新插入元素放在栈顶,并将栈顶指针增加 1。如下图所示:</p>
|
||
<p><img src="assets/CgqCHl7Uy2mAZIutAABpJkFDBhc178.png" alt="5.png" /></p>
|
||
<p>删除数据元素,即出栈操作,只需要 top - 1 就可以了。</p>
|
||
<p>对于查找操作,栈没有额外的改变,跟线性表一样,它也需要遍历整个栈来完成基于某些条件的数值查找。</p>
|
||
<h4>链栈</h4>
|
||
<p>关于链式栈,就是用链表的方式对栈的表示。通常,可以把栈顶放在单链表的头部,如下图所示。由于链栈的后进先出,原来的头指针就显得毫无作用了。因此,对于链栈来说,是不需要头指针的。相反,它需要增加指向栈顶的 top 指针,这是压栈和出栈操作的重要支持。</p>
|
||
<p><img src="assets/CgqCHl7Uy3aANCZjAABKDxPgTUQ478.png" alt="6.png" /></p>
|
||
<p>对于链栈,新增数据的压栈操作,与链表最后插入的新数据基本相同。需要额外处理的,就是栈的 top 指针。如下图所示,插入新的数据,则需要让新的结点指向原栈顶,即 top 指针指向的对象,再让 top 指针指向新的结点。</p>
|
||
<p><img src="assets/CgqCHl7Uy4iAUXORAACjOoEAXFA016.png" alt="7.png" /></p>
|
||
<p>在链式栈中进行删除操作时,只能在栈顶进行操作。因此,将栈顶的 top 指针指向栈顶元素的 next 指针即可完成删除。对于链式栈来说,新增删除数据元素没有任何循环操作,其时间复杂度均为 O(1)。</p>
|
||
<p>对于查找操作,相对链表而言,链栈没有额外的改变,它也需要遍历整个栈来完成基于某些条件的数值查找。</p>
|
||
<p>通过分析你会发现,不管是顺序栈还是链栈,数据的新增、删除、查找与线性表的操作原理极为相似,时间复杂度完全一样,都依赖当前位置的指针来进行数据对象的操作。区别仅仅在于新增和删除的对象,只能是栈顶的数据结点。</p>
|
||
<h3>栈的案例</h3>
|
||
<p>接下来,我们一起来看两个栈的经典案例,从中你可以更深切地体会到栈所发挥出的价值。</p>
|
||
<p>例 1,给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。有效字符串需满足:左括号必须与相同类型的右括号匹配,左括号必须以正确的顺序匹配。例如,{ [ ( ) ( ) ] } 是合法的,而 { ( [ ) ] } 是非法的。</p>
|
||
<p>这个问题很显然是栈发挥价值的地方。原因是,在匹配括号是否合法时,左括号是从左到右依次出现,而右括号则需要按照“后进先出”的顺序依次与左括号匹配。因此,实现方案就是通过栈的进出来完成。</p>
|
||
<p>具体为,从左到右顺序遍历字符串。当出现左括号时,压栈。当出现右括号时,出栈。并且判断当前右括号,和被出栈的左括号是否是互相匹配的一对。如果不是,则字符串非法。当遍历完成之后,如果栈为空。则合法。如下图所示:</p>
|
||
<p><img src="assets/Ciqc1F7Uy5WAaANiAAslJ0QN4bc832.gif" alt="8.gif" /></p>
|
||
<p>代码如下:</p>
|
||
<pre><code>public static void main(String[] args) {
|
||
String s = "{[()()]}";
|
||
System.out.println(isLegal(s));
|
||
}
|
||
private static int isLeft(char c) {
|
||
if (c == '{' || c == '(' || c == '[') {
|
||
return 1;
|
||
} else {
|
||
return 2;
|
||
}
|
||
}
|
||
private static int isPair(char p, char curr) {
|
||
if ((p == '{' && curr == '}') || (p == '[' && curr == ']') || (p == '(' && curr == ')')) {
|
||
return 1;
|
||
} else {
|
||
return 0;
|
||
}
|
||
}
|
||
private static String isLegal(String s) {
|
||
Stack stack = new Stack();
|
||
for (int i = 0; i < s.length(); i++) {
|
||
char curr = s.charAt(i);
|
||
if (isLeft(curr) == 1) {
|
||
stack.push(curr);
|
||
} else {
|
||
if (stack.empty()) {
|
||
return "非法";
|
||
}
|
||
char p = (char) stack.pop();
|
||
if (isPair(p, curr) == 0) {
|
||
return "非法";
|
||
}
|
||
}
|
||
}
|
||
if (stack.empty()) {
|
||
return "合法";
|
||
} else {
|
||
return "非法";
|
||
}
|
||
}
|
||
</code></pre>
|
||
<p>例 2,浏览器的页面访问都包含了后退和前进功能,利用栈如何实现?</p>
|
||
<p>我们利用浏览器上网时,都会高频使用后退和前进的功能。比如,你按照顺序先后访问了 5 个页面,分别标记为 1、2、3、4、5。现在你不确定网页 5 是不是你要看的网页,需要回退到网页 3,则需要使用到两次后退的功能。假设回退后,你发现网页 4 有你需要的信息,那么就还需要再执行一次前进的操作。</p>
|
||
<p>为了支持前进、后退的功能,利用栈来记录用户历史访问网页的顺序信息是一个不错的选择。此时需要维护两个栈,分别用来支持后退和前进。当用户访问了一个新的页面,则对后退栈进行压栈操作。当用户后退了一个页面,则后退栈进行出栈,同时前进栈执行压栈。当用户前进了一个页面,则前进栈出栈,同时后退栈压栈。我们以用户按照 1、2、3、4、5、4、3、4 的浏览顺序为例,两个栈的数据存储过程,如下图所示:</p>
|
||
<p><img src="assets/CgqCHl7Uy5-ANiGoABFtWM1_uZU348.gif" alt="9.gif" /></p>
|
||
<h3>总结</h3>
|
||
<p>好的,这节课的内容就到这里了。这一节的内容主要围绕栈的原理、栈对于数据的增删查操作展开。</p>
|
||
<p>栈继承了线性表的优点与不足,是个限制版的线性表。限制的功能是,只允许数据从栈顶进出,这也就是栈后进先出的性质。不管是顺序栈还是链式栈,它们对于数据的新增操作和删除操作的时间复杂度都是 O(1)。而在查找操作中,栈和线性表一样只能通过全局遍历的方式进行,也就是需要 O(n) 的时间复杂度。</p>
|
||
<p>栈具有后进先出的特性,当你面对的问题需要高频使用新增、删除操作,且新增和删除操作的数据执行顺序具备后来居上的相反关系时,栈就是个不错的选择。例如,浏览器的前进和后退,括号匹配等问题。栈在代码的编写中有着很广泛的应用,例如,大多数程序运行环境都有的子程序的调用,函数的递归调用等。这些问题都具有后进先出的特性。关于递归,我们会在后续的课程单独进行分析。</p>
|
||
<h3>练习题</h3>
|
||
<p>下面我们给出本课时的练习题。在上一课时中,我们的习题是,给定一个包含 n 个元素的链表,现在要求每 k 个节点一组进行翻转,打印翻转后的链表结果。其中,k 是一个正整数,且 n 可被 k 整除。</p>
|
||
<p>例如,链表为 1 -> 2 -> 3 -> 4 -> 5 -> 6,k = 3,则打印 321654。仍然是这道题,我们试试用栈来解决它吧。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/重学数据结构与算法-完/04 如何完成线性表结构下的增删查?.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/重学数据结构与算法-完/06 队列:先进先出的线性表,如何实现增删查?.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997dc6ff0d3cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|