mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 05:06:42 +08:00
1092 lines
53 KiB
HTML
1092 lines
53 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>互联网并发限流实战.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
|
||
<a href="/文章/AQS 万字图文全面解析.md.html">AQS 万字图文全面解析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Docker 镜像构建原理及源码分析.md.html">Docker 镜像构建原理及源码分析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/ElasticSearch 小白从入门到精通.md.html">ElasticSearch 小白从入门到精通</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/JVM CPU Profiler技术原理及源码深度解析.md.html">JVM CPU Profiler技术原理及源码深度解析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/JVM 垃圾收集器.md.html">JVM 垃圾收集器</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/JVM 面试的 30 个知识点.md.html">JVM 面试的 30 个知识点</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java IO 体系、线程模型大总结.md.html">Java IO 体系、线程模型大总结</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java NIO浅析.md.html">Java NIO浅析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java 面试题集锦(网络篇).md.html">Java 面试题集锦(网络篇)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java-直接内存 DirectMemory 详解.md.html">Java-直接内存 DirectMemory 详解</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中9种常见的CMS GC问题分析与解决(上).md.html">Java中9种常见的CMS GC问题分析与解决(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中9种常见的CMS GC问题分析与解决(下).md.html">Java中9种常见的CMS GC问题分析与解决(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中的SPI.md.html">Java中的SPI</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中的ThreadLocal.md.html">Java中的ThreadLocal</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java线程池实现原理及其在美团业务中的实践.md.html">Java线程池实现原理及其在美团业务中的实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java魔法类:Unsafe应用解析.md.html">Java魔法类:Unsafe应用解析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Kafka 源码阅读笔记.md.html">Kafka 源码阅读笔记</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理.md.html">Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB Buffer Pool.md.html">MySQL · 引擎特性 · InnoDB Buffer Pool</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB IO子系统.md.html">MySQL · 引擎特性 · InnoDB IO子系统</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB 事务系统.md.html">MySQL · 引擎特性 · InnoDB 事务系统</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB 同步机制.md.html">MySQL · 引擎特性 · InnoDB 同步机制</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB 数据页解析.md.html">MySQL · 引擎特性 · InnoDB 数据页解析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB崩溃恢复.md.html">MySQL · 引擎特性 · InnoDB崩溃恢复</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · 临时表那些事儿.md.html">MySQL · 引擎特性 · 临时表那些事儿</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 主从复制 半同步复制.md.html">MySQL 主从复制 半同步复制</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 主从复制 基于GTID复制.md.html">MySQL 主从复制 基于GTID复制</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 主从复制.md.html">MySQL 主从复制</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 事务日志(redo log和undo log).md.html">MySQL 事务日志(redo log和undo log)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 亿级别数据迁移实战代码分享.md.html">MySQL 亿级别数据迁移实战代码分享</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 从一条数据说起-InnoDB行存储数据结构.md.html">MySQL 从一条数据说起-InnoDB行存储数据结构</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 地基基础:事务和锁的面纱.md.html">MySQL 地基基础:事务和锁的面纱</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 地基基础:数据字典.md.html">MySQL 地基基础:数据字典</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 地基基础:数据库字符集.md.html">MySQL 地基基础:数据库字符集</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 性能优化:碎片整理.md.html">MySQL 性能优化:碎片整理</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 故障诊断:一个 ALTER TALBE 执行了很久,你慌不慌?.md.html">MySQL 故障诊断:一个 ALTER TALBE 执行了很久,你慌不慌?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 故障诊断:如何在日志中轻松定位大事务.md.html">MySQL 故障诊断:如何在日志中轻松定位大事务</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 故障诊断:教你快速定位加锁的 SQL.md.html">MySQL 故障诊断:教你快速定位加锁的 SQL</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 日志详解.md.html">MySQL 日志详解</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 的半同步是什么?.md.html">MySQL 的半同步是什么?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL中的事务和MVCC.md.html">MySQL中的事务和MVCC</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL事务_事务隔离级别详解.md.html">MySQL事务_事务隔离级别详解</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL优化:优化 select count().md.html">MySQL优化:优化 select count()</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL共享锁、排他锁、悲观锁、乐观锁.md.html">MySQL共享锁、排他锁、悲观锁、乐观锁</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL的MVCC(多版本并发控制).md.html">MySQL的MVCC(多版本并发控制)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/QingStor 对象存储架构设计及最佳实践.md.html">QingStor 对象存储架构设计及最佳实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/RocketMQ 面试题集锦.md.html">RocketMQ 面试题集锦</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/SnowFlake 雪花算法生成分布式 ID.md.html">SnowFlake 雪花算法生成分布式 ID</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring Boot 2.x 结合 k8s 实现分布式微服务架构.md.html">Spring Boot 2.x 结合 k8s 实现分布式微服务架构</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring Boot 教程:如何开发一个 starter.md.html">Spring Boot 教程:如何开发一个 starter</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring MVC 原理.md.html">Spring MVC 原理</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring MyBatis和Spring整合的奥秘.md.html">Spring MyBatis和Spring整合的奥秘</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring 帮助你更好的理解Spring循环依赖.md.html">Spring 帮助你更好的理解Spring循环依赖</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring 循环依赖及解决方式.md.html">Spring 循环依赖及解决方式</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring中眼花缭乱的BeanDefinition.md.html">Spring中眼花缭乱的BeanDefinition</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Vert.x 基础入门.md.html">Vert.x 基础入门</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/eBay 的 Elasticsearch 性能调优实践.md.html">eBay 的 Elasticsearch 性能调优实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/不可不说的Java“锁”事.md.html">不可不说的Java“锁”事</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/文章/互联网并发限流实战.md.html">互联网并发限流实战</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/从ReentrantLock的实现看AQS的原理及应用.md.html">从ReentrantLock的实现看AQS的原理及应用</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/从SpringCloud开始,聊微服务架构.md.html">从SpringCloud开始,聊微服务架构</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/全面了解 JDK 线程池实现原理.md.html">全面了解 JDK 线程池实现原理</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式一致性理论与算法.md.html">分布式一致性理论与算法</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式一致性算法 Raft.md.html">分布式一致性算法 Raft</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式唯一 ID 解析.md.html">分布式唯一 ID 解析</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式链路追踪:集群管理设计.md.html">分布式链路追踪:集群管理设计</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/动态代理种类及原理,你知道多少?.md.html">动态代理种类及原理,你知道多少?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/响应式架构与 RxJava 在有赞零售的实践.md.html">响应式架构与 RxJava 在有赞零售的实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/大数据算法——布隆过滤器.md.html">大数据算法——布隆过滤器</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/如何优雅地记录操作日志?.md.html">如何优雅地记录操作日志?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/如何设计一个亿级消息量的 IM 系统.md.html">如何设计一个亿级消息量的 IM 系统</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/异步网络模型.md.html">异步网络模型</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/当我们在讨论CQRS时,我们在讨论些神马?.md.html">当我们在讨论CQRS时,我们在讨论些神马?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/彻底理解 MySQL 的索引机制.md.html">彻底理解 MySQL 的索引机制</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/最全的 116 道 Redis 面试题解答.md.html">最全的 116 道 Redis 面试题解答</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/有赞权限系统(SAM).md.html">有赞权限系统(SAM)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/有赞零售中台建设方法的探索与实践.md.html">有赞零售中台建设方法的探索与实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/服务注册与发现原理剖析(Eureka、Zookeeper、Nacos).md.html">服务注册与发现原理剖析(Eureka、Zookeeper、Nacos)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/深入浅出Cache.md.html">深入浅出Cache</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/深入理解 MySQL 底层实现.md.html">深入理解 MySQL 底层实现</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/漫画讲解 git rebase VS git merge.md.html">漫画讲解 git rebase VS git merge</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/生成浏览器唯一稳定 ID 的探索.md.html">生成浏览器唯一稳定 ID 的探索</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/缓存 如何保证缓存与数据库的双写一致性?.md.html">缓存 如何保证缓存与数据库的双写一致性?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/网易严选怎么做全链路监控的?.md.html">网易严选怎么做全链路监控的?</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/美团万亿级 KV 存储架构与实践.md.html">美团万亿级 KV 存储架构与实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/美团点评Kubernetes集群管理实践.md.html">美团点评Kubernetes集群管理实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/美团百亿规模API网关服务Shepherd的设计与实现.md.html">美团百亿规模API网关服务Shepherd的设计与实现</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/解读《阿里巴巴 Java 开发手册》背后的思考.md.html">解读《阿里巴巴 Java 开发手册》背后的思考</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/认识 MySQL 和 Redis 的数据一致性问题.md.html">认识 MySQL 和 Redis 的数据一致性问题</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/进阶:Dockerfile 高阶使用指南及镜像优化.md.html">进阶:Dockerfile 高阶使用指南及镜像优化</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/铁总在用的高性能分布式缓存计算框架 Geode.md.html">铁总在用的高性能分布式缓存计算框架 Geode</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/阿里云PolarDB及其共享存储PolarFS技术实现分析(上).md.html">阿里云PolarDB及其共享存储PolarFS技术实现分析(上)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/阿里云PolarDB及其共享存储PolarFS技术实现分析(下).md.html">阿里云PolarDB及其共享存储PolarFS技术实现分析(下)</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/面试最常被问的 Java 后端题.md.html">面试最常被问的 Java 后端题</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/领域驱动设计在互联网业务开发中的实践.md.html">领域驱动设计在互联网业务开发中的实践</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/领域驱动设计的菱形对称架构.md.html">领域驱动设计的菱形对称架构</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/高效构建 Docker 镜像的最佳实践.md.html">高效构建 Docker 镜像的最佳实践</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>互联网并发限流实战</h1>
|
||
<p>本文主要介绍互联网限流相关的概念与算法,并且附以 Java 代码实现。包括计数器法、滑动窗口计数法、漏斗桶算法、令牌桶算法。文末实现一个自定义限流注解以及 AOP 限流拦截框架。</p>
|
||
<h3>限流相关的基本概念</h3>
|
||
<p>在介绍限流之前先介绍几个容易混淆的概念。包括服务熔断、服务降级、服务隔离。</p>
|
||
<h4>服务熔断</h4>
|
||
<p>理解熔断之前先了解另一个概念:微服务的雪崩效应。因为熔断机制通常是作为应对雪崩效应的一种微服务链路保护机制。</p>
|
||
<p>在微服务架构中,一个微服务通常是完成一个单一业务功能的独立应用。这样做的好处是各个业务功能之间最大可能地解耦,每个微服务可以独立演进。通常一个应用可能会有很多个微服务组成,服务间通过 RPC 相互调用。假设有如下服务调用链路:</p>
|
||
<p><img src="assets/54c95090-d32d-11ea-880c-9db893e02967.png" alt="img" /></p>
|
||
<p>A、B 依赖 C 去调用 E、F。如果 E 服务不能正常提供服务了,C 的超时重试机制将会执行。同时新的调用不断产生,会导致 C 对 E 服务的调用大量的积压,产生大量的调用等待和重试调用,慢慢会耗尽 C 的资源,比如内存或 CPU,同时影响 C 调 F,最终整个应用不可用。本例中由于链路上 E 的故障,对微服务 A、B 的调用就会占用越来越多的系统资源,进而引起系统崩溃,即所谓的“雪崩效应”。</p>
|
||
<p>熔断机制是应对雪崩效应的一种微服务链路保护机制。生活中有很多熔断的例子,比如电路中某个地方的电压过高,熔断器就会熔断,对电路进行过载保护。股市里面,如果股票指数涨跌幅过高,触及设置的熔断点时,随后的一段时间内将暂停交易。微服务架构中的熔断机制作用类似。当调用链路的某个微服务不可用、或者响应时间太长、或者错误次数达到某个阈值,会进行服务熔断,即快速返回响应信息。当检测到该节点微服务调用响应正常后,逐步恢复正常的调用链路。</p>
|
||
<h4>服务降级</h4>
|
||
<p>服务降级主要是指在服务器压力陡增的情况下,根据某种策略对一些非核心服务或者页面不做请求处理或简单处理,从而释放服务器资源以保证核心业务正常运作或高效运作。比如每年的双十一活动时,电商网站把无关交易的服务降级,比如查看历史订单、商品历史评论等业务,只显示最近 100 条等等。</p>
|
||
<h4>服务隔离</h4>
|
||
<p>隔离是指将服务或者资源隔离开。服务隔离能够在服务发生故障时限定其影响范围,保证其它服务还是可用的。资源隔离一般是指通过隔离来减少服务间资源竞争。资源隔离的粒度有很多种,比如线程隔离、进程隔离、机房隔离等。线程隔离即隔离线程池资源,不同服务的执行使用不同的线程池。这样做的好处是即使其中一个服务线程池满了,也不会影响到其他的服务。比如下图中 Tomcat 处理请求,对每个微服务,都分配一个线程池。</p>
|
||
<p><img src="assets/f105f530-d32d-11ea-a0a4-91ded31f57b1.png" alt="img" /></p>
|
||
<h4>服务限流</h4>
|
||
<p>进入正题,本篇主要阐述的是服务限流。服务限流是限制请求的数量,即某个时间窗口内的请求速率。一旦达到限制速率则可以拒绝服务(定向到错误页或告知系统忙)、排队等待(比如秒杀、用户评论、下单)、降级(返回兜底数据或默认数据)。</p>
|
||
<h4>各个概念比较</h4>
|
||
<p>服务熔断、服务降级都是从系统的可用性角度考虑,防止系统响应延迟甚至崩溃而采用的技术性的系统保护手段。服务熔断一般是由某个下游服务故障引起,而服务降级一般是从整体业务的负载情况考虑。限流则是对单位时间内请求次数的限制。三者都是通过某种手段保证流量过载时系统的可用性。服务隔离则是让不同的业务使用各自独立的线资源池,避免服务之间资源竞争的影响。</p>
|
||
<h3>常见的限流手段</h3>
|
||
<p>常见的限流手段有如下这些。限制总的请求并发数(比如数据库连接池、线程池)、限制瞬时并发数(如 nginx 的 limit_conn 模块,用来限制瞬时并发连接数)、限制某个时间窗口内的平均速率(RateLimiter、nginx 的 limit_req 模块);此外还有如限制 RPC 调用频率、限制 MQ 的消费速率等。</p>
|
||
<h3>常用的限流算法</h3>
|
||
<h4>简单计数</h4>
|
||
<p>计数器算法是使用计数器在周期内累加访问次数,当达到设定的阈值时,触发限流策略。下一个周期开始时,进行清零,重新计数。比如 1 分钟内限制请求总数为 100。如果超过 100 则返回失败。</p>
|
||
<h4>滑动窗口计数</h4>
|
||
<p>简单计数然简单,但是有一个致命的问题,即临界问题。比如 1 分钟内限制请求总数为 100 的场景下,前一个一分钟内直到这一分钟快结束的时候才来了 100 个请求,而后一个一分钟刚开始就立即来了 100 个请求。虽然是在两个不同的一分钟区间,但是事实上不到一分钟的时间内,来了 200 个请求,因此计数器限流失效。</p>
|
||
<p><img src="assets/c424bdc0-d32e-11ea-8a86-ed86f9ad27de.png" alt="img" /></p>
|
||
<p>滑动窗口算法是将时间周期进一步划分为 N 个小周期,分别记录每个小周期内访问次数,并且根据时间滑动删除过期的小周期。 如下图,假设时间周期为 1min,将 1min 再分为 6 个小周期,统计每个小周期的访问数量。如果第 6 个小周期内,访问数量为 100,到了第 7 个小周期内,访问数量也为 100,那么 即触发滑动窗口(红色虚线框出)内的访问次数限制。由此可见,滑动窗口的单位区间划分越多,滑动窗口的滚动就越平滑,限流统计就会越精确。</p>
|
||
<p><img src="assets/e1bb3440-d32e-11ea-a0a4-91ded31f57b1.png" alt="img" /></p>
|
||
<h4>漏斗桶</h4>
|
||
<p>漏斗桶算法顾名思义,算法内部有一个容器,类似生活中的漏斗。当请求进来时,相当于水倒入漏斗,然后从下方出水口匀速流出。不管进水速率如何增减,出水速率始终保持一致,直到漏桶为空。由于进水速度未知,突发流量来不及处理就会在桶中累积。如果突破了桶容量就会溢出,即丢弃请求。漏斗桶的示意图如下:</p>
|
||
<p><img src="assets/078b8850-d32f-11ea-a750-5174bd44fffd.png" alt="img" /></p>
|
||
<h4>令牌桶</h4>
|
||
<p>令牌桶算法某种程度上是对漏斗桶算法的改进。令牌桶能够在限制请求平均速率的同时还允许一定程度的突发调用。在令牌桶算法中,存在一个桶,用来存放固定数量的令牌。该算法以一定的速率往桶中放入令牌。每次请求需要先获取到桶中的令牌才能继续执行,否则等待可用的令牌,或者直接拒绝。</p>
|
||
<p>放令牌的动作是持续不断进行的,如果桶中令牌数达到上限,则丢弃令牌,因此桶中可能一直持有大量的可用令牌。此时请求进来可以直接拿到令牌执行。比如设置 qps 为 100,那么限流器初始化完成 1 秒后,桶中就已经有 100 个令牌了,如果此前还没有请求过来,这时突然来了 100 个请求,该限流器可以抵挡瞬时的 100 个请求。由此可见,只有桶中没有令牌时,请求才会进行等待,最终表现的效果即为以一定的速率执行。令牌桶的示意图如下:</p>
|
||
<p><img src="assets/40703300-d32f-11ea-938e-f5ee97dc461f.png" alt="img" /></p>
|
||
<p>除了在应用层限流外也可以在网络层限流,比如通过 nginx 的限流模块设置单个客户端 IP 的访问限制等,不在本文讨论范围内。</p>
|
||
<h3>常用的限流算法 Java 实现</h3>
|
||
<h4>工程概览</h4>
|
||
<p><img src="assets/d5a4ea60-d32f-11ea-ad5f-9fce25eeda58.png" alt="img" /></p>
|
||
<h4>基于 Redis 的简单计数法</h4>
|
||
<h5><strong>新建 Spring Boot 工程并引入依赖</strong></h5>
|
||
<pre><code><properties>
|
||
<java.version>1.8</java.version>
|
||
<spring.version>2.3.1.RELEASE</spring.version>
|
||
</properties>
|
||
<dependencies>
|
||
<dependency>
|
||
<groupId>org.springframework.boot</groupId>
|
||
<artifactId>spring-boot-starter-web</artifactId>
|
||
</dependency>
|
||
<dependency>
|
||
<groupId>org.springframework.data</groupId>
|
||
<artifactId>spring-data-redis</artifactId>
|
||
<version>${spring.version}</version>
|
||
</dependency>
|
||
<dependency>
|
||
<groupId>org.apache.commons</groupId>
|
||
<artifactId>commons-pool2</artifactId>
|
||
<version>2.8.0</version>
|
||
</dependency>
|
||
<dependency>
|
||
<groupId>io.lettuce</groupId>
|
||
<artifactId>lettuce-core</artifactId>
|
||
<version>5.3.2.RELEASE</version>
|
||
</dependency>
|
||
</dependencies>
|
||
</code></pre>
|
||
<h5><strong>配置 application.properties</strong></h5>
|
||
<pre><code>server.port=8888
|
||
# Redis 数据库索引(默认为 0)
|
||
spring.redis.database=0
|
||
# Redis 服务器地址
|
||
spring.redis.host=127.0.0.1
|
||
# Redis 服务器连接端口
|
||
spring.redis.port=6379
|
||
# Redis 服务器连接密码(默认为空)
|
||
spring.redis.password=
|
||
# 连接池最大连接数(使用负值表示没有限制)
|
||
spring.redis.jedis.pool.max-active=20
|
||
# 连接池最大阻塞等待时间(使用负值表示没有限制)
|
||
spring.redis.jedis.pool.max-wait=1000
|
||
# 连接池中的最大空闲连接
|
||
spring.redis.jedis.pool.max-idle=10
|
||
# 连接池中的最小空闲连接
|
||
spring.redis.jedis.pool.min-idle=0
|
||
# 连接超时时间(毫秒)
|
||
spring.redis.timeout=2000
|
||
</code></pre>
|
||
<h5><strong>编写 RedisCountLimit</strong></h5>
|
||
<p>基于 redis 的 incr 机制</p>
|
||
<pre><code>import org.springframework.beans.factory.annotation.Autowired;
|
||
import org.springframework.data.redis.core.StringRedisTemplate;
|
||
import org.springframework.stereotype.Component;
|
||
import java.time.LocalTime;
|
||
import java.util.concurrent.TimeUnit;
|
||
/
|
||
* 计数法限流
|
||
*/
|
||
@Component
|
||
public class RedisCountLimit {
|
||
public static final String KEY = "ratelimit_";
|
||
public static final int LIMIT = 10;
|
||
@Autowired
|
||
StringRedisTemplate redisTemplate;
|
||
public boolean triggerLimit(String reqPath) {
|
||
String redisKey = KEY + reqPath;
|
||
Long count = redisTemplate.opsForValue().increment(redisKey, 1);
|
||
System.out.println(LocalTime.now() + " " + reqPath + " " + count);
|
||
if (count != null && count == 1) {
|
||
redisTemplate.expire(redisKey, 60, TimeUnit.SECONDS);
|
||
}
|
||
//防止出现并发操作未设置超时时间的场景,这样 key 就是永不过期,存在风险
|
||
if (redisTemplate.getExpire(redisKey, TimeUnit.SECONDS) == -1) {
|
||
redisTemplate.expire(redisKey, 60, TimeUnit.SECONDS);
|
||
}
|
||
if (count > LIMIT) {
|
||
System.out.println(LocalTime.now() + " " + reqPath + " count is:" + count + ",触发限流");
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>Controller 层集成</strong></h5>
|
||
<pre><code>import com.bigbird.ratelimit.rediscount.RedisCountLimit;
|
||
import org.springframework.beans.factory.annotation.Autowired;
|
||
import org.springframework.web.bind.annotation.RequestMapping;
|
||
import org.springframework.web.bind.annotation.RestController;
|
||
import javax.servlet.http.HttpServletRequest;
|
||
import java.time.LocalDateTime;
|
||
/
|
||
* 基于 redis 的计数器限流 demo
|
||
*/
|
||
@RestController
|
||
public class RedisCountLimitController {
|
||
@Autowired
|
||
RedisCountLimit redisCountLimit;
|
||
@RequestMapping("/rediscount")
|
||
public String redisCount(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = redisCountLimit.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
@RequestMapping("/rediscount2")
|
||
public String redisCount2(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = redisCountLimit.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>运行测试</strong></h5>
|
||
<p>启动 Spring Boot 工程,确保 Redis 已运行,浏览器访问,f5 多刷新几次:</p>
|
||
<ul>
|
||
<li>http://localhost:8888/rediscount</li>
|
||
<li>http://localhost:8888/rediscount2</li>
|
||
</ul>
|
||
<h4>基于 Redis 的滑动窗口计数法</h4>
|
||
<h5><strong>编写 RedisSlidingCountLimit</strong></h5>
|
||
<p>通过 Redis 的 zset 数据结构:</p>
|
||
<pre><code>import org.springframework.beans.factory.annotation.Autowired;
|
||
import org.springframework.data.redis.core.StringRedisTemplate;
|
||
import org.springframework.stereotype.Component;
|
||
import java.time.LocalTime;
|
||
import java.util.UUID;
|
||
/
|
||
* 滑动窗口计数法限流
|
||
*/
|
||
@Component
|
||
public class RedisSlidingCountLimit {
|
||
public static final String KEY = "slidelimit_";
|
||
public static final int LIMIT = 10;
|
||
//限流时间间隔(秒)
|
||
public static final int PERIOD = 60;
|
||
@Autowired
|
||
StringRedisTemplate redisTemplate;
|
||
public boolean triggerLimit(String reqPath) {
|
||
String redisKey = KEY + reqPath;
|
||
if (redisTemplate.hasKey(redisKey)) {
|
||
Integer count = redisTemplate.opsForZSet().rangeByScore(redisKey, System.currentTimeMillis() - PERIOD * 1000, System.currentTimeMillis()).size();
|
||
System.out.println(count);
|
||
if (count != null && count > LIMIT) {
|
||
System.out.println(LocalTime.now() + " " + reqPath + " count is:" + count + ",触发限流");
|
||
return true;
|
||
}
|
||
}
|
||
long currentTime = System.currentTimeMillis();
|
||
redisTemplate.opsForZSet().add(redisKey, UUID.randomUUID().toString(), currentTime);
|
||
// 清除旧的访问数据,比如 period=60s 时,标识清除 60s 以前的记录
|
||
redisTemplate.opsForZSet().removeRangeByScore(redisKey, 0, System.currentTimeMillis() - PERIOD * 1000);
|
||
return false;
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>Controller 层集成</strong></h5>
|
||
<pre><code>import com.bigbird.ratelimit.rediscount.RedisSlidingCountLimit;
|
||
import org.springframework.beans.factory.annotation.Autowired;
|
||
import org.springframework.web.bind.annotation.RequestMapping;
|
||
import org.springframework.web.bind.annotation.RestController;
|
||
import javax.servlet.http.HttpServletRequest;
|
||
import java.time.LocalDateTime;
|
||
/
|
||
* 基于 Redis 的滑动窗口计数器限流 demo
|
||
*/
|
||
@RestController
|
||
public class RedisSlidingCountLimitController {
|
||
@Autowired
|
||
RedisSlidingCountLimit redisSlidingCountLimit;
|
||
@RequestMapping("/slidecount")
|
||
public String redisCount(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = redisSlidingCountLimit.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
@RequestMapping("/slidecount2")
|
||
public String redisCount2(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = redisSlidingCountLimit.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>运行测试</strong></h5>
|
||
<p>启动 Spring Boot 工程,确保 Redis 已运行,访问:</p>
|
||
<ul>
|
||
<li>http://localhost:8888/slidecount</li>
|
||
<li>http://localhost:8888/slidecount2</li>
|
||
</ul>
|
||
<h4>漏斗桶算法实现</h4>
|
||
<h5><strong>编写 LeakyBucket</strong></h5>
|
||
<pre><code>import java.time.LocalTime;
|
||
/
|
||
* 漏斗桶算法限流
|
||
*/
|
||
public class LeakyBucket {
|
||
/
|
||
* 每秒处理数量(出水速率)
|
||
*/
|
||
private int rate;
|
||
/
|
||
* 桶容量
|
||
*/
|
||
private int capacity;
|
||
/
|
||
* 当前水量
|
||
*/
|
||
private int water;
|
||
/
|
||
* 最后刷新时间
|
||
*/
|
||
private long refreshTime;
|
||
public LeakyBucket(int rate, int capacity) {
|
||
this.capacity = capacity;
|
||
this.rate = rate;
|
||
}
|
||
private void refreshWater() {
|
||
long now = System.currentTimeMillis();
|
||
water = (int) Math.max(0, water - (now - refreshTime) / 1000 * rate);
|
||
refreshTime = now;
|
||
}
|
||
public synchronized boolean triggerLimit(String reqPath) {
|
||
refreshWater();
|
||
if (water < capacity) {
|
||
water++;
|
||
System.out.println(LocalTime.now() + " " + reqPath + " current capacity is:" + (capacity - water) + ",water is:" + water + ",请求成功");
|
||
return false;
|
||
} else {
|
||
System.out.println(LocalTime.now() + " " + reqPath + " current capacity is:" + (capacity - water) + ",water is:" + water + ",触发限流");
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>Controller 层集成</strong></h5>
|
||
<pre><code>import com.bigbird.ratelimit.leakybucket.LeakyBucket;
|
||
import org.springframework.web.bind.annotation.RequestMapping;
|
||
import org.springframework.web.bind.annotation.RestController;
|
||
import javax.servlet.http.HttpServletRequest;
|
||
import java.time.LocalDateTime;
|
||
/
|
||
* 漏斗桶算法限流 demo
|
||
*/
|
||
@RestController
|
||
public class LeakyBucketLimitController {
|
||
LeakyBucket bucket1 = new LeakyBucket(2, 10);
|
||
LeakyBucket bucket2 = new LeakyBucket(2, 20);
|
||
@RequestMapping("/leakyBucket1")
|
||
public String leakyBucket1(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = bucket1.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
@RequestMapping("/leakyBucket2")
|
||
public String leakyBucket2(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = bucket2.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>运行测试</strong></h5>
|
||
<p>启动 Spring Boot 工程,浏览器访问下列地址,连续 f5 多刷新测试</p>
|
||
<ul>
|
||
<li>http://localhost:8888/leakyBucket1</li>
|
||
<li>http://localhost:8888/leakyBucket2</li>
|
||
</ul>
|
||
<h4>令牌桶算法实现</h4>
|
||
<p>基于 Guava RateLimiter 实现。</p>
|
||
<h5><strong>引入依赖</strong></h5>
|
||
<pre><code><dependency>
|
||
<groupId>com.google.guava</groupId>
|
||
<artifactId>guava</artifactId>
|
||
<version>29.0-jre</version>
|
||
</dependency>
|
||
</code></pre>
|
||
<h5><strong>编写 TokenBucket</strong></h5>
|
||
<pre><code>import com.google.common.util.concurrent.RateLimiter;
|
||
import java.time.LocalTime;
|
||
import java.util.concurrent.TimeUnit;
|
||
/
|
||
* 令牌桶算法限流
|
||
*/
|
||
public class TokenBucket {
|
||
/
|
||
* qps,即每秒处理数量
|
||
*/
|
||
private int rate;
|
||
private RateLimiter rateLimiter;
|
||
public TokenBucket(int rate) {
|
||
this.rate = rate;
|
||
this.rateLimiter = RateLimiter.create(rate);
|
||
}
|
||
public boolean triggerLimit(String reqPath) {
|
||
boolean acquireRes = rateLimiter.tryAcquire(500, TimeUnit.MILLISECONDS);
|
||
if (acquireRes) {
|
||
System.out.println(LocalTime.now() + " " + reqPath + ",请求成功");
|
||
return false;
|
||
} else {
|
||
System.out.println(LocalTime.now() + " " + reqPath + ",触发限流");
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>Controller 层集成</strong></h5>
|
||
<pre><code>import com.bigbird.ratelimit.tokenbucket.TokenBucket;
|
||
import org.springframework.web.bind.annotation.RequestMapping;
|
||
import org.springframework.web.bind.annotation.RestController;
|
||
import javax.servlet.http.HttpServletRequest;
|
||
import java.time.LocalDateTime;
|
||
/
|
||
* 令牌桶限流算法 demo
|
||
*/
|
||
@RestController
|
||
public class TokenBucketLimitController {
|
||
/
|
||
* 每秒钟限速 1
|
||
*/
|
||
TokenBucket bucket1 = new TokenBucket(1);
|
||
/
|
||
* 每秒钟限速 2
|
||
*/
|
||
TokenBucket bucket2 = new TokenBucket(2);
|
||
@RequestMapping("/tokenBucket1")
|
||
public String leakyBucket1(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = bucket1.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
@RequestMapping("/tokenBucket2")
|
||
public String leakyBucket2(HttpServletRequest request) {
|
||
String servletPath = request.getServletPath();
|
||
boolean triggerLimit = bucket2.triggerLimit(servletPath);
|
||
if (triggerLimit) {
|
||
return LocalDateTime.now() + " " + servletPath + " 系统忙,稍后再试";
|
||
} else {
|
||
return LocalDateTime.now() + " " + servletPath + "请求成功";
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>运行测试</strong></h5>
|
||
<p>启动 Spring Boot 工程,浏览器访问下列地址,连续 f5 多刷新测试:</p>
|
||
<ul>
|
||
<li>http://localhost:8888/tokenBucket1</li>
|
||
<li>http://localhost:8888/tokenBucket2</li>
|
||
</ul>
|
||
<h4>自定义注解、AOP 封装限流</h4>
|
||
<p>上述实现方式简单粗暴,实际应用中可以封装自定义注解,并通过 AOP 实现 controller 层接口自动限流拦截。废话不多说,上代码。下面的案例基于 RateLimiter 令牌桶。其它算法读者可以参考此例自行封装。</p>
|
||
<h5><strong>引入依赖</strong></h5>
|
||
<pre><code><dependency>
|
||
<groupId>org.springframework.boot</groupId>
|
||
<artifactId>spring-boot-starter-aop</artifactId>
|
||
</dependency>
|
||
</code></pre>
|
||
<h5><strong>编写自定义注解</strong></h5>
|
||
<pre><code>import java.lang.annotation.ElementType;
|
||
import java.lang.annotation.Retention;
|
||
import java.lang.annotation.RetentionPolicy;
|
||
import java.lang.annotation.Target;
|
||
@Target(value = ElementType.METHOD)
|
||
@Retention(RetentionPolicy.RUNTIME)
|
||
public @interface ExtRateLimiter {
|
||
double permitsPerSecond();
|
||
long timeout();
|
||
}
|
||
</code></pre>
|
||
<h5><strong>编写 AOP 切面</strong></h5>
|
||
<pre><code>import com.bigbird.ratelimit.annotation.ExtRateLimiter;
|
||
import com.google.common.util.concurrent.RateLimiter;
|
||
import org.aspectj.lang.ProceedingJoinPoint;
|
||
import org.aspectj.lang.annotation.Around;
|
||
import org.aspectj.lang.annotation.Aspect;
|
||
import org.aspectj.lang.annotation.Pointcut;
|
||
import org.aspectj.lang.reflect.MethodSignature;
|
||
import org.springframework.stereotype.Component;
|
||
import org.springframework.web.context.request.RequestContextHolder;
|
||
import org.springframework.web.context.request.ServletRequestAttributes;
|
||
import javax.servlet.http.HttpServletResponse;
|
||
import java.io.IOException;
|
||
import java.io.PrintWriter;
|
||
import java.lang.reflect.Method;
|
||
import java.time.LocalTime;
|
||
import java.util.concurrent.ConcurrentHashMap;
|
||
import java.util.concurrent.TimeUnit;
|
||
/
|
||
* 封装基于 RateLimiter 的限流注解
|
||
*/
|
||
@Component
|
||
@Aspect
|
||
public class RateLimiterAop {
|
||
/
|
||
* 保存接口路径和限流器的对应关系
|
||
*/
|
||
private ConcurrentHashMap<String, RateLimiter> rateLimiters = new ConcurrentHashMap();
|
||
@Pointcut("execution(public * com.bigbird.ratelimit.controller.*.*(..))")
|
||
public void rateLimiterAop() {
|
||
}
|
||
/
|
||
* 使用环绕通知拦截所有 Controller 请求
|
||
*
|
||
* @param proceedingJoinPoint
|
||
* @return
|
||
*/
|
||
@Around("rateLimiterAop()")
|
||
public Object doBefore(ProceedingJoinPoint proceedingJoinPoint) throws Throwable {
|
||
MethodSignature signature = (MethodSignature) proceedingJoinPoint.getSignature();
|
||
Method method = signature.getMethod();
|
||
if (method == null) {
|
||
return null;
|
||
}
|
||
ExtRateLimiter extRateLimiter = method.getDeclaredAnnotation(ExtRateLimiter.class);
|
||
if (extRateLimiter == null) {
|
||
return proceedingJoinPoint.proceed();
|
||
}
|
||
double permitsPerSecond = extRateLimiter.permitsPerSecond();
|
||
long timeout = extRateLimiter.timeout();
|
||
ServletRequestAttributes requestAttributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
|
||
String requestURI = requestAttributes.getRequest().getRequestURI();
|
||
RateLimiter rateLimiter = rateLimiters.get(requestURI);
|
||
if (rateLimiter == null) {
|
||
rateLimiter = RateLimiter.create(permitsPerSecond);
|
||
RateLimiter rateLimiterPrevious = rateLimiters.putIfAbsent(requestURI, rateLimiter);
|
||
if (rateLimiterPrevious != null) {
|
||
rateLimiter = rateLimiterPrevious;
|
||
}
|
||
}
|
||
boolean tryAcquire = rateLimiter.tryAcquire(timeout, TimeUnit.MILLISECONDS);
|
||
if (!tryAcquire) {
|
||
System.out.println(LocalTime.now() + " " + requestURI + " 触发限流");
|
||
doFallback();
|
||
return null;
|
||
}
|
||
System.out.println(LocalTime.now() + " " + requestURI + " 请求成功");
|
||
return proceedingJoinPoint.proceed();
|
||
}
|
||
private void doFallback() {
|
||
ServletRequestAttributes requestAttributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
|
||
HttpServletResponse response = requestAttributes.getResponse();
|
||
response.setContentType("text/html;charset=UTF-8");
|
||
PrintWriter writer = null;
|
||
try {
|
||
writer = response.getWriter();
|
||
writer.println("系统忙,请稍后再试!");
|
||
} catch (IOException e) {
|
||
e.printStackTrace();
|
||
} finally {
|
||
writer.close();
|
||
}
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>Controller 层集成</strong></h5>
|
||
<p>对要限流的接口加 ExtRateLimiter 注解设置:</p>
|
||
<pre><code>import com.bigbird.ratelimit.annotation.ExtRateLimiter;
|
||
import org.springframework.web.bind.annotation.RequestMapping;
|
||
import org.springframework.web.bind.annotation.RestController;
|
||
import javax.servlet.http.HttpServletRequest;
|
||
import java.time.LocalTime;
|
||
/
|
||
* 自定义注解标识接口进行限流
|
||
*/
|
||
@RestController
|
||
public class ExtRateLimiterController {
|
||
@RequestMapping("/extRate1")
|
||
@ExtRateLimiter(permitsPerSecond = 0.5, timeout = 500)
|
||
public String extRate1(HttpServletRequest request) {
|
||
return LocalTime.now() + " " + request.getRequestURI() + "请求成功";
|
||
}
|
||
@RequestMapping("/extRate2")
|
||
@ExtRateLimiter(permitsPerSecond = 2, timeout = 500)
|
||
public String extRate2(HttpServletRequest request) {
|
||
return LocalTime.now() + " " + request.getRequestURI() + "请求成功";
|
||
}
|
||
}
|
||
</code></pre>
|
||
<h5><strong>运行测试</strong></h5>
|
||
<p>启动 Spring Boot 工程,浏览器访问下列地址,连续 f5 多刷新测试:</p>
|
||
<ul>
|
||
<li>http://localhost:8888/extRate1</li>
|
||
<li>http://localhost:8888/extRate2</li>
|
||
</ul>
|
||
<h3>小结</h3>
|
||
<p>本文通俗易懂地介绍了互联网限流相关的概念与算法,并且附以 Java 代码实现。包括计数器法、滑动窗口计数法、漏斗桶算法、令牌桶算法。最后封装了一个自定义限流注解以及 AOP 拦截接口限流。读者通过对本文的学习可以快速上手限流算法实现,应用到实际工作中。</p>
|
||
<p>代码下载地址:</p>
|
||
<blockquote>
|
||
<p><a href="https://github.com/bigbirditedu/learn-ratelimit">https://github.com/bigbirditedu/learn-ratelimit</a></p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/文章/不可不说的Java“锁”事.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/文章/从ReentrantLock的实现看AQS的原理及应用.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"7099803488b48b66","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|