mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 13:16:41 +08:00
847 lines
23 KiB
HTML
847 lines
23 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
||
<head>
|
||
|
||
<head>
|
||
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
|
||
<link rel="icon" href="/static/favicon.png">
|
||
|
||
<title>02 如何根据业务来选择缓存模式和组件?.md.html</title>
|
||
|
||
<!-- Spectre.css framework -->
|
||
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
|
||
<!-- theme css & js -->
|
||
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
|
||
</head>
|
||
|
||
|
||
|
||
<body>
|
||
|
||
|
||
|
||
<div class="book-container">
|
||
|
||
<div class="book-sidebar">
|
||
|
||
<div class="book-brand">
|
||
|
||
<a href="/">
|
||
|
||
<img src="/static/favicon.png">
|
||
|
||
<span>技术文章摘抄</span>
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div class="book-menu uncollapsible">
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="../">上一级</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/00 开篇寄语:缓存,你真的用对了吗?.md.html">00 开篇寄语:缓存,你真的用对了吗?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/01 业务数据访问性能太低怎么办?.md.html">01 业务数据访问性能太低怎么办?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
<a class="current-tab" href="/专栏/300分钟吃透分布式缓存-完/02 如何根据业务来选择缓存模式和组件?.md.html">02 如何根据业务来选择缓存模式和组件?.md.html</a>
|
||
|
||
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/03 设计缓存架构时需要考量哪些因素?.md.html">03 设计缓存架构时需要考量哪些因素?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/04 缓存失效、穿透和雪崩问题怎么处理?.md.html">04 缓存失效、穿透和雪崩问题怎么处理?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/05 缓存数据不一致和并发竞争怎么处理?.md.html">05 缓存数据不一致和并发竞争怎么处理?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/06 Hot Key和Big Key引发的问题怎么应对?.md.html">06 Hot Key和Big Key引发的问题怎么应对?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/07 MC为何是应用最广泛的缓存组件?.md.html">07 MC为何是应用最广泛的缓存组件?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/08 MC系统架构是如何布局的?.md.html">08 MC系统架构是如何布局的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/09 MC是如何使用多线程和状态机来处理请求命令的?.md.html">09 MC是如何使用多线程和状态机来处理请求命令的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/10 MC是怎么定位key的.md.html">10 MC是怎么定位key的.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/11 MC如何淘汰冷key和失效key.md.html">11 MC如何淘汰冷key和失效key.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/12 为何MC能长期维持高性能读写?.md.html">12 为何MC能长期维持高性能读写?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/13 如何完整学习MC协议及优化client访问?.md.html">13 如何完整学习MC协议及优化client访问?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/14 大数据时代,MC如何应对新的常见问题?.md.html">14 大数据时代,MC如何应对新的常见问题?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/15 如何深入理解、应用及扩展 Twemproxy?.md.html">15 如何深入理解、应用及扩展 Twemproxy?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/16 常用的缓存组件Redis是如何运行的?.md.html">16 常用的缓存组件Redis是如何运行的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/17 如何理解、选择并使用Redis的核心数据类型?.md.html">17 如何理解、选择并使用Redis的核心数据类型?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/18 Redis协议的请求和响应有哪些“套路”可循?.md.html">18 Redis协议的请求和响应有哪些“套路”可循?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/19 Redis系统架构中各个处理模块是干什么的?.md.html">19 Redis系统架构中各个处理模块是干什么的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/20 Redis如何处理文件事件和时间事件?.md.html">20 Redis如何处理文件事件和时间事件?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/21 Redis读取请求数据后,如何进行协议解析和处理.md.html">21 Redis读取请求数据后,如何进行协议解析和处理.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/22 怎么认识和应用Redis内部数据结构?.md.html">22 怎么认识和应用Redis内部数据结构?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/23 Redis是如何淘汰key的?.md.html">23 Redis是如何淘汰key的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/24 Redis崩溃后,如何进行数据恢复的?.md.html">24 Redis崩溃后,如何进行数据恢复的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/25 Redis是如何处理容易超时的系统调用的?.md.html">25 Redis是如何处理容易超时的系统调用的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/26 如何大幅成倍提升Redis处理性能?.md.html">26 如何大幅成倍提升Redis处理性能?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/27 Redis是如何进行主从复制的?.md.html">27 Redis是如何进行主从复制的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/28 如何构建一个高性能、易扩展的Redis集群?.md.html">28 如何构建一个高性能、易扩展的Redis集群?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/29 从容应对亿级QPS访问,Redis还缺少什么?.md.html">29 从容应对亿级QPS访问,Redis还缺少什么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html">30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html">31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/32 一个典型的分布式缓存系统是什么样的?.md.html">32 一个典型的分布式缓存系统是什么样的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/33 如何为秒杀系统设计缓存体系?.md.html">33 如何为秒杀系统设计缓存体系?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/34 如何为海量计数场景设计缓存体系?.md.html">34 如何为海量计数场景设计缓存体系?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/35 如何为社交feed场景设计缓存体系?.md.html">35 如何为社交feed场景设计缓存体系?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
|
||
<div class="sidebar-toggle-inner"></div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script>
|
||
|
||
function add_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.add('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function remove_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function sidebar_toggle() {
|
||
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let content = document.querySelector('.off-canvas-content')
|
||
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
|
||
sidebar_toggle.classList.remove('extend')
|
||
|
||
sidebar.classList.remove('hide')
|
||
|
||
content.classList.remove('extend')
|
||
|
||
} else { // hide
|
||
|
||
sidebar_toggle.classList.add('extend')
|
||
|
||
sidebar.classList.add('hide')
|
||
|
||
content.classList.add('extend')
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
function open_sidebar() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.add('show')
|
||
|
||
overlay.classList.add('show')
|
||
|
||
}
|
||
|
||
function hide_canvas() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.remove('show')
|
||
|
||
overlay.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
<div class="off-canvas-content">
|
||
|
||
<div class="columns">
|
||
|
||
<div class="column col-12 col-lg-12">
|
||
|
||
<div class="book-navbar">
|
||
|
||
<!-- For Responsive Layout -->
|
||
|
||
<header class="navbar">
|
||
|
||
<section class="navbar-section">
|
||
|
||
<a onclick="open_sidebar()">
|
||
|
||
<i class="icon icon-menu"></i>
|
||
|
||
</a>
|
||
|
||
</section>
|
||
|
||
</header>
|
||
|
||
</div>
|
||
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
|
||
overflow-x: auto;
|
||
|
||
overflow-y: hidden;">
|
||
|
||
<div class="book-post">
|
||
|
||
<p id="tip" align="center"></p>
|
||
|
||
<div><h1>02 如何根据业务来选择缓存模式和组件?</h1>
|
||
|
||
<p>你好,我是你的缓存老师陈波,欢迎进入第 2 课时“缓存的读写模式及分类”。这一课时我们主要学习缓存的读写模式以及缓存的分类。</p>
|
||
|
||
<h6>缓存读写模式</h6>
|
||
|
||
<p>如下图,业务系统读写缓存有 3 种模式:</p>
|
||
|
||
<ul>
|
||
|
||
<li>Cache Aside(旁路缓存)</li>
|
||
|
||
<li>Read/Write Through(读写穿透)</li>
|
||
|
||
<li>Write Behind Caching(异步缓存写入)</li>
|
||
|
||
</ul>
|
||
|
||
<p><img src="assets/CgotOV2kRdSARL_yAABgmkQ_X6k170.png" alt="img" /></p>
|
||
|
||
<h6>Cache Aside</h6>
|
||
|
||
<p><img src="assets/CgoB5l2kRdSAE8I4AAFjGcx_DP4974.png" alt="img" /></p>
|
||
|
||
<p>如上图所示,Cache Aside 模式中,业务应用方对于写,是更新 DB 后,直接将 key 从 cache 中删除,然后由 DB 驱动缓存数据的更新;而对于读,是先读 cache,如果 cache 没有,则读 DB,同时将从 DB 中读取的数据回写到 cache。</p>
|
||
|
||
<p>这种模式的特点是,业务端处理所有数据访问细节,同时利用 Lazy 计算的思想,更新 DB 后,直接删除 cache 并通过 DB 更新,确保数据以 DB 结果为准,则可以大幅降低 cache 和 DB 中数据不一致的概率。</p>
|
||
|
||
<p>如果没有专门的存储服务,同时是对数据一致性要求比较高的业务,或者是缓存数据更新比较复杂的业务,这些情况都比较适合使用 Cache Aside 模式。如微博发展初期,不少业务采用这种模式,这些缓存数据需要通过多个原始数据进行计算后设置。在部分数据变更后,直接删除缓存。同时,使用一个 Trigger 组件,实时读取 DB 的变更日志,然后重新计算并更新缓存。如果读缓存的时候,Trigger 还没写入 cache,则由调用方自行到 DB 加载计算并写入 cache。</p>
|
||
|
||
<h6>Read/Write Through</h6>
|
||
|
||
<h6><img src="assets/CgotOV2kRdSAGi0EAAFFkVZArO4978.png" alt="img" /></h6>
|
||
|
||
<p>如上图,对于 Cache Aside 模式,业务应用需要同时维护 cache 和 DB 两个数据存储方,过于繁琐,于是就有了 Read/Write Through 模式。在这种模式下,业务应用只关注一个存储服务即可,业务方的读写 cache 和 DB 的操作,都由存储服务代理。存储服务收到业务应用的写请求时,会首先查 cache,如果数据在 cache 中不存在,则只更新 DB,如果数据在 cache 中存在,则先更新 cache,然后更新 DB。而存储服务收到读请求时,如果命中 cache 直接返回,否则先从 DB 加载,回种到 cache 后返回响应。</p>
|
||
|
||
<p>这种模式的特点是,存储服务封装了所有的数据处理细节,业务应用端代码只用关注业务逻辑本身,系统的隔离性更佳。另外,进行写操作时,如果 cache 中没有数据则不更新,有缓存数据才更新,内存效率更高。</p>
|
||
|
||
<p>微博 Feed 的 Outbox Vector(即用户最新微博列表)就采用这种模式。一些粉丝较少且不活跃的用户发表微博后,Vector 服务会首先查询 Vector Cache,如果 cache 中没有该用户的 Outbox 记录,则不写该用户的 cache 数据,直接更新 DB 后就返回,只有 cache 中存在才会通过 CAS 指令进行更新。</p>
|
||
|
||
<h6>Write Behind Caching</h6>
|
||
|
||
<p><img src="assets/CgoB5l2kRdSAKsw-AAFBxhGDxBU820.png" alt="img" /></p>
|
||
|
||
<p>Write Behind Caching 模式与 Read/Write Through 模式类似,也由数据存储服务来管理 cache 和 DB 的读写。不同点是,数据更新时,Read/write Through 是同步更新 cache 和 DB,而 Write Behind Caching 则是只更新缓存,不直接更新 DB,而是改为异步批量的方式来更新 DB。该模式的特点是,数据存储的写性能最高,非常适合一些变更特别频繁的业务,特别是可以合并写请求的业务,比如对一些计数业务,一条 Feed 被点赞 1万 次,如果更新 1万 次 DB 代价很大,而合并成一次请求直接加 1万,则是一个非常轻量的操作。但这种模型有个显著的缺点,即数据的一致性变差,甚至在一些极端场景下可能会丢失数据。比如系统 Crash、机器宕机时,如果有数据还没保存到 DB,则会存在丢失的风险。所以这种读写模式适合变更频率特别高,但对一致性要求不太高的业务,这样写操作可以异步批量写入 DB,减小 DB 压力。</p>
|
||
|
||
<p>讲到这里,缓存的三种读写模式讲完了,你可以看到三种模式各有优劣,不存在最佳模式。实际上,我们也不可能设计出一个最佳的完美模式出来,如同前面讲到的空间换时间、访问延迟换低成本一样,高性能和强一致性从来都是有冲突的,系统设计从来就是取舍,随处需要 trade-off。这个思想会贯穿整个 cache 课程,这也许是我们学习这个课程的另外一个收获,即如何根据业务场景,更好的做 trade-off,从而设计出更好的服务系统。</p>
|
||
|
||
<h6>缓存分类及常用缓存介绍</h6>
|
||
|
||
<p>前面介绍了缓存的基本思想、优势、代价以及读写模式,接下来一起看下互联网企业常用的缓存有哪些分类。</p>
|
||
|
||
<h6>按宿主层次分类</h6>
|
||
|
||
<p>按宿主层次分类的话,缓存一般可以分为本地 Cache、进程间 Cache 和远程 Cache。</p>
|
||
|
||
<ul>
|
||
|
||
<li>本地 Cache 是指业务进程内的缓存,这类缓存由于在业务系统进程内,所以读写性能超高且无任何网络开销,但不足是会随着业务系统重启而丢失。</li>
|
||
|
||
<li>进程间 Cache 是本机独立运行的缓存,这类缓存读写性能较高,不会随着业务系统重启丢数据,并且可以大幅减少网络开销,但不足是业务系统和缓存都在相同宿主机,运维复杂,且存在资源竞争。</li>
|
||
|
||
<li>远程 Cache 是指跨机器部署的缓存,这类缓存因为独立设备部署,容量大且易扩展,在互联网企业使用最广泛。不过远程缓存需要跨机访问,在高读写压力下,带宽容易成为瓶颈。</li>
|
||
|
||
</ul>
|
||
|
||
<p>本地 Cache 的缓存组件有 Ehcache、Guava Cache 等,开发者自己也可以用 Map、Set 等轻松构建一个自己专用的本地 Cache。进程间 Cache 和远程 Cache 的缓存组件相同,只是部署位置的差异罢了,这类缓存组件有 Memcached、Redis、Pika 等。</p>
|
||
|
||
<h6>按存储介质分类</h6>
|
||
|
||
<p>还有一种常见的分类方式是按存储介质来分,这样可以分为内存型缓存和持久化型缓存。</p>
|
||
|
||
<ul>
|
||
|
||
<li>内存型缓存将数据存储在内存,读写性能很高,但缓存系统重启或 Crash 后,内存数据会丢失。</li>
|
||
|
||
<li>持久化型缓存将数据存储到 SSD/Fusion-IO 硬盘中,相同成本下,这种缓存的容量会比内存型缓存大 1 个数量级以上,而且数据会持久化落地,重启不丢失,但读写性能相对低 1~2 个数量级。Memcached 是典型的内存型缓存,而 Pika 以及其他基于 RocksDB 开发的缓存组件等则属于持久化型缓存。</li>
|
||
|
||
</ul>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div>
|
||
|
||
<div style="float: left">
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/01 业务数据访问性能太低怎么办?.md.html">上一页</a>
|
||
|
||
</div>
|
||
|
||
<div style="float: right">
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/03 设计缓存架构时需要考量哪些因素?.md.html">下一页</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
|
||
</div>
|
||
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70996e346d2a3d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
|
||
</body>
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
|
||
<script>
|
||
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
|
||
|
||
function gtag() {
|
||
|
||
dataLayer.push(arguments);
|
||
|
||
}
|
||
|
||
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-NPSEEVD756');
|
||
|
||
var path = window.location.pathname
|
||
|
||
var cookie = getCookie("lastPath");
|
||
|
||
console.log(path)
|
||
|
||
if (path.replace("/", "") === "") {
|
||
|
||
if (cookie.replace("/", "") !== "") {
|
||
|
||
console.log(cookie)
|
||
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
setCookie("lastPath", path)
|
||
|
||
}
|
||
|
||
|
||
|
||
function setCookie(cname, cvalue) {
|
||
|
||
var d = new Date();
|
||
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
|
||
var expires = "expires=" + d.toGMTString();
|
||
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
|
||
}
|
||
|
||
|
||
|
||
function getCookie(cname) {
|
||
|
||
var name = cname + "=";
|
||
|
||
var ca = document.cookie.split(';');
|
||
|
||
for (var i = 0; i < ca.length; i++) {
|
||
|
||
var c = ca[i].trim();
|
||
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
|
||
}
|
||
|
||
return "";
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
</html>
|
||
|