mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 21:26:41 +08:00
1195 lines
34 KiB
HTML
1195 lines
34 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
||
<head>
|
||
|
||
<head>
|
||
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
|
||
<link rel="icon" href="/static/favicon.png">
|
||
|
||
<title>16 IO 加速:与众不同的 Netty 零拷贝技术.md.html</title>
|
||
|
||
<!-- Spectre.css framework -->
|
||
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
|
||
<!-- theme css & js -->
|
||
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
|
||
</head>
|
||
|
||
|
||
|
||
<body>
|
||
|
||
|
||
|
||
<div class="book-container">
|
||
|
||
<div class="book-sidebar">
|
||
|
||
<div class="book-brand">
|
||
|
||
<a href="/">
|
||
|
||
<img src="/static/favicon.png">
|
||
|
||
<span>技术文章摘抄</span>
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div class="book-menu uncollapsible">
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="../">上一级</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/00 学好 Netty,是你修炼 Java 内功的必经之路.md.html">00 学好 Netty,是你修炼 Java 内功的必经之路.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/01 初识 Netty:为什么 Netty 这么流行?.md.html">01 初识 Netty:为什么 Netty 这么流行?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/02 纵览全局:把握 Netty 整体架构脉络.md.html">02 纵览全局:把握 Netty 整体架构脉络.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/03 引导器作用:客户端和服务端启动都要做些什么?.md.html">03 引导器作用:客户端和服务端启动都要做些什么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/04 事件调度层:为什么 EventLoop 是 Netty 的精髓?.md.html">04 事件调度层:为什么 EventLoop 是 Netty 的精髓?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/05 服务编排层:Pipeline 如何协调各类 Handler ?.md.html">05 服务编排层:Pipeline 如何协调各类 Handler ?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/06 粘包拆包问题:如何获取一个完整的网络包?.md.html">06 粘包拆包问题:如何获取一个完整的网络包?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/07 接头暗语:如何利用 Netty 实现自定义协议通信?.md.html">07 接头暗语:如何利用 Netty 实现自定义协议通信?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/08 开箱即用:Netty 支持哪些常用的解码器?.md.html">08 开箱即用:Netty 支持哪些常用的解码器?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/09 数据传输:writeAndFlush 处理流程剖析.md.html">09 数据传输:writeAndFlush 处理流程剖析.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/10 双刃剑:合理管理 Netty 堆外内存.md.html">10 双刃剑:合理管理 Netty 堆外内存.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/11 另起炉灶:Netty 数据传输载体 ByteBuf 详解.md.html">11 另起炉灶:Netty 数据传输载体 ByteBuf 详解.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/12 他山之石:高性能内存分配器 jemalloc 基本原理.md.html">12 他山之石:高性能内存分配器 jemalloc 基本原理.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/13 举一反三:Netty 高性能内存管理设计(上).md.html">13 举一反三:Netty 高性能内存管理设计(上).md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/14 举一反三:Netty 高性能内存管理设计(下).md.html">14 举一反三:Netty 高性能内存管理设计(下).md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/15 轻量级对象回收站:Recycler 对象池技术解析.md.html">15 轻量级对象回收站:Recycler 对象池技术解析.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
<a class="current-tab" href="/专栏/Netty 核心原理剖析与 RPC 实践-完/16 IO 加速:与众不同的 Netty 零拷贝技术.md.html">16 IO 加速:与众不同的 Netty 零拷贝技术.md.html</a>
|
||
|
||
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/17 源码篇:从 Linux 出发深入剖析服务端启动流程.md.html">17 源码篇:从 Linux 出发深入剖析服务端启动流程.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/18 源码篇:解密 Netty Reactor 线程模型.md.html">18 源码篇:解密 Netty Reactor 线程模型.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/19 源码篇:一个网络请求在 Netty 中的旅程.md.html">19 源码篇:一个网络请求在 Netty 中的旅程.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/20 技巧篇:Netty 的 FastThreadLocal 究竟比 ThreadLocal 快在哪儿?.md.html">20 技巧篇:Netty 的 FastThreadLocal 究竟比 ThreadLocal 快在哪儿?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/21 技巧篇:延迟任务处理神器之时间轮 HashedWheelTimer.md.html">21 技巧篇:延迟任务处理神器之时间轮 HashedWheelTimer.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/22 技巧篇:高性能无锁队列 Mpsc Queue.md.html">22 技巧篇:高性能无锁队列 Mpsc Queue.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/23 架构设计:如何实现一个高性能分布式 RPC 框架.md.html">23 架构设计:如何实现一个高性能分布式 RPC 框架.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/24 服务发布与订阅:搭建生产者和消费者的基础框架.md.html">24 服务发布与订阅:搭建生产者和消费者的基础框架.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/25 远程通信:通信协议设计以及编解码的实现.md.html">25 远程通信:通信协议设计以及编解码的实现.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/26 服务治理:服务发现与负载均衡机制的实现.md.html">26 服务治理:服务发现与负载均衡机制的实现.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/27 动态代理:为用户屏蔽 RPC 调用的底层细节.md.html">27 动态代理:为用户屏蔽 RPC 调用的底层细节.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/28 实战总结:RPC 实战总结与进阶延伸.md.html">28 实战总结:RPC 实战总结与进阶延伸.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/29 编程思想:Netty 中应用了哪些设计模式?.md.html">29 编程思想:Netty 中应用了哪些设计模式?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/30 实践总结:Netty 在项目开发中的一些最佳实践.md.html">30 实践总结:Netty 在项目开发中的一些最佳实践.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/31 结束语 技术成长之路:如何打造自己的技术体系.md.html">31 结束语 技术成长之路:如何打造自己的技术体系.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
|
||
<div class="sidebar-toggle-inner"></div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script>
|
||
|
||
function add_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.add('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function remove_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function sidebar_toggle() {
|
||
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let content = document.querySelector('.off-canvas-content')
|
||
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
|
||
sidebar_toggle.classList.remove('extend')
|
||
|
||
sidebar.classList.remove('hide')
|
||
|
||
content.classList.remove('extend')
|
||
|
||
} else { // hide
|
||
|
||
sidebar_toggle.classList.add('extend')
|
||
|
||
sidebar.classList.add('hide')
|
||
|
||
content.classList.add('extend')
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
function open_sidebar() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.add('show')
|
||
|
||
overlay.classList.add('show')
|
||
|
||
}
|
||
|
||
function hide_canvas() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.remove('show')
|
||
|
||
overlay.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
<div class="off-canvas-content">
|
||
|
||
<div class="columns">
|
||
|
||
<div class="column col-12 col-lg-12">
|
||
|
||
<div class="book-navbar">
|
||
|
||
<!-- For Responsive Layout -->
|
||
|
||
<header class="navbar">
|
||
|
||
<section class="navbar-section">
|
||
|
||
<a onclick="open_sidebar()">
|
||
|
||
<i class="icon icon-menu"></i>
|
||
|
||
</a>
|
||
|
||
</section>
|
||
|
||
</header>
|
||
|
||
</div>
|
||
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
|
||
overflow-x: auto;
|
||
|
||
overflow-y: hidden;">
|
||
|
||
<div class="book-post">
|
||
|
||
<p id="tip" align="center"></p>
|
||
|
||
<div><h1>16 IO 加速:与众不同的 Netty 零拷贝技术</h1>
|
||
|
||
<p>今天的课程我们继续讨论 Netty 实现高性能的另一个高阶特性——零拷贝。零拷贝是一个耳熟能详的词语,在 Linux、Kafka、RocketMQ 等知名的产品中都有使用,通常用于提升 I/O 性能。而且零拷贝也是面试过程中的高频问题,那么你知道零拷贝体现在哪些地方吗?Netty 的零拷贝技术又是如何实现的呢?接下来我们就针对 Netty 零拷贝特性进行详细地分析。</p>
|
||
|
||
<h3>传统 Linux 中的零拷贝技术</h3>
|
||
|
||
<p>在介绍 Netty 零拷贝特性之前,我们有必要学习下传统 Linux 中零拷贝的工作原理。所谓零拷贝,就是在数据操作时,不需要将数据从一个内存位置拷贝到另外一个内存位置,这样可以减少一次内存拷贝的损耗,从而节省了 CPU 时钟周期和内存带宽。</p>
|
||
|
||
<p>我们模拟一个场景,从文件中读取数据,然后将数据传输到网络上,那么传统的数据拷贝过程会分为哪几个阶段呢?具体如下图所示。</p>
|
||
|
||
<p><img src="assets/Ciqc1F_Qbz2AD4uMAARnlgeSFc4993.png" alt="Drawing 0.png" /></p>
|
||
|
||
<p>从上图中可以看出,从数据读取到发送一共经历了<strong>四次数据拷贝</strong>,具体流程如下:</p>
|
||
|
||
<ol>
|
||
|
||
<li>当用户进程发起 read() 调用后,上下文从用户态切换至内核态。DMA 引擎从文件中读取数据,并存储到内核态缓冲区,这里是<strong>第一次数据拷贝</strong>。</li>
|
||
|
||
<li>请求的数据从内核态缓冲区拷贝到用户态缓冲区,然后返回给用户进程。第二次数据拷贝的过程同时,会导致上下文从内核态再次切换到用户态。</li>
|
||
|
||
<li>用户进程调用 send() 方法期望将数据发送到网络中,此时会触发第三次线程切换,用户态会再次切换到内核态,请求的数据从用户态缓冲区被拷贝到 Socket 缓冲区。</li>
|
||
|
||
<li>最终 send() 系统调用结束返回给用户进程,发生了第四次上下文切换。第四次拷贝会异步执行,从 Socket 缓冲区拷贝到协议引擎中。</li>
|
||
|
||
</ol>
|
||
|
||
<blockquote>
|
||
|
||
<p>说明:DMA(Direct Memory Access,直接内存存取)是现代大部分硬盘都支持的特性,DMA 接管了数据读写的工作,不需要 CPU 再参与 I/O 中断的处理,从而减轻了 CPU 的负担。</p>
|
||
|
||
</blockquote>
|
||
|
||
<p>传统的数据拷贝过程为什么不是将数据直接传输到用户缓冲区呢?其实引入内核缓冲区可以充当缓存的作用,这样就可以实现文件数据的预读,提升 I/O 的性能。但是当请求数据量大于内核缓冲区大小时,在完成一次数据的读取到发送可能要经历数倍次数的数据拷贝,这就造成严重的性能损耗。</p>
|
||
|
||
<p>接下来我们介绍下使用零拷贝技术之后数据传输的流程。重新回顾一遍传统数据拷贝的过程,可以发现第二次和第三次拷贝是可以去除的,DMA 引擎从文件读取数据后放入到内核缓冲区,然后可以直接从内核缓冲区传输到 Socket 缓冲区,从而减少内存拷贝的次数。</p>
|
||
|
||
<p>在 Linux 中系统调用 sendfile() 可以实现将数据从一个文件描述符传输到另一个文件描述符,从而实现了零拷贝技术。在 Java 中也使用了零拷贝技术,它就是 NIO FileChannel 类中的 transferTo() 方法,transferTo() 底层就依赖了操作系统零拷贝的机制,它可以将数据从 FileChannel 直接传输到另外一个 Channel。transferTo() 方法的定义如下:</p>
|
||
|
||
<pre><code>public abstract long transferTo(long position, long count, WritableByteChannel target) throws IOException;
|
||
|
||
</code></pre>
|
||
|
||
<p>FileChannel#transferTo() 的使用也非常简单,我们直接看如下的代码示例,通过 transferTo() 将 from.data 传输到 to.data(),等于实现了文件拷贝的功能。</p>
|
||
|
||
<pre><code>public void testTransferTo() throws IOException {
|
||
|
||
|
||
|
||
RandomAccessFile fromFile = new RandomAccessFile("from.data", "rw");
|
||
|
||
|
||
|
||
FileChannel fromChannel = fromFile.getChannel();
|
||
|
||
|
||
|
||
RandomAccessFile toFile = new RandomAccessFile("to.data", "rw");
|
||
|
||
|
||
|
||
FileChannel toChannel = toFile.getChannel();
|
||
|
||
|
||
|
||
long position = 0;
|
||
|
||
|
||
|
||
long count = fromChannel.size();
|
||
|
||
|
||
|
||
fromChannel.transferTo(position, count, toChannel);
|
||
|
||
|
||
|
||
}
|
||
|
||
</code></pre>
|
||
|
||
<p>在使用了 FileChannel#transferTo() 传输数据之后,我们看下数据拷贝流程发生了哪些变化,如下图所示:</p>
|
||
|
||
<p><img src="assets/CgqCHl_Qb0mANyjrAATEtVu9f6c390.png" alt="Drawing 1.png" /></p>
|
||
|
||
<p>比较大的一个变化是,DMA 引擎从文件中读取数据拷贝到内核态缓冲区之后,由操作系统直接拷贝到 Socket 缓冲区,不再拷贝到用户态缓冲区,所以数据拷贝的次数从之前的 4 次减少到 3 次。</p>
|
||
|
||
<p>但是上述的优化离达到零拷贝的要求还是有差距的,能否继续减少内核中的数据拷贝次数呢?在 Linux 2.4 版本之后,开发者对 Socket Buffer 追加一些 Descriptor 信息来进一步减少内核数据的复制。如下图所示,DMA 引擎读取文件内容并拷贝到内核缓冲区,然后并没有再拷贝到 Socket 缓冲区,只是将数据的长度以及位置信息被追加到 Socket 缓冲区,然后 DMA 引擎根据这些描述信息,直接从内核缓冲区读取数据并传输到协议引擎中,从而消除最后一次 CPU 拷贝。</p>
|
||
|
||
<p><img src="assets/CgqCHl_Qb2eASFBJAAT4WPf__Us976.png" alt="Drawing 2.png" /></p>
|
||
|
||
<p>通过上述 Linux 零拷贝技术的介绍,你也许还会存在疑问,最终使用零拷贝之后,不是还存在着数据拷贝操作吗?其实从 Linux 操作系统的角度来说,零拷贝就是为了避免用户态和内存态之间的数据拷贝。无论是传统的数据拷贝还是使用零拷贝技术,其中有 2 次 DMA 的数据拷贝必不可少,只是这 2 次 DMA 拷贝都是依赖硬件来完成,不需要 CPU 参与。所以,在这里我们讨论的零拷贝是个广义的概念,只要能够减少不必要的 CPU 拷贝,都可以被称为零拷贝。</p>
|
||
|
||
<h3>Netty 的零拷贝技术</h3>
|
||
|
||
<p>介绍完传统 Linux 的零拷贝技术之后,我们再来学习下 Netty 中的零拷贝如何实现。Netty 中的零拷贝和传统 Linux 的零拷贝不太一样。Netty 中的零拷贝技术除了操作系统级别的功能封装,更多的是面向用户态的数据操作优化,主要体现在以下 5 个方面:</p>
|
||
|
||
<ul>
|
||
|
||
<li>堆外内存,避免 JVM 堆内存到堆外内存的数据拷贝。</li>
|
||
|
||
<li>CompositeByteBuf 类,可以组合多个 Buffer 对象合并成一个逻辑上的对象,避免通过传统内存拷贝的方式将几个 Buffer 合并成一个大的 Buffer。</li>
|
||
|
||
<li>通过 Unpooled.wrappedBuffer 可以将 byte 数组包装成 ByteBuf 对象,包装过程中不会产生内存拷贝。</li>
|
||
|
||
<li>ByteBuf.slice 操作与 Unpooled.wrappedBuffer 相反,slice 操作可以将一个 ByteBuf 对象切分成多个 ByteBuf 对象,切分过程中不会产生内存拷贝,底层共享一个 byte 数组的存储空间。</li>
|
||
|
||
<li>Netty 使用 FileRegion 实现文件传输,FileRegion 底层封装了 FileChannel#transferTo() 方法,可以将文件缓冲区的数据直接传输到目标 Channel,避免内核缓冲区和用户态缓冲区之间的数据拷贝,这属于操作系统级别的零拷贝。</li>
|
||
|
||
</ul>
|
||
|
||
<p>下面我们从以上 5 个方面逐一进行介绍。</p>
|
||
|
||
<h4>堆外内存</h4>
|
||
|
||
<p>如果在 JVM 内部执行 I/O 操作时,必须将数据拷贝到堆外内存,才能执行系统调用。这是所有 VM 语言都会存在的问题。那么为什么操作系统不能直接使用 JVM 堆内存进行 I/O 的读写呢?主要有两点原因:第一,操作系统并不感知 JVM 的堆内存,而且 JVM 的内存布局与操作系统所分配的是不一样的,操作系统并不会按照 JVM 的行为来读写数据。第二,同一个对象的内存地址随着 JVM GC 的执行可能会随时发生变化,例如 JVM GC 的过程中会通过压缩来减少内存碎片,这就涉及对象移动的问题了。</p>
|
||
|
||
<p>Netty 在进行 I/O 操作时都是使用的堆外内存,可以避免数据从 JVM 堆内存到堆外内存的拷贝。</p>
|
||
|
||
<h4>CompositeByteBuf</h4>
|
||
|
||
<p>CompositeByteBuf 是 Netty 中实现零拷贝机制非常重要的一个数据结构,CompositeByteBuf 可以理解为一个虚拟的 Buffer 对象,它是由多个 ByteBuf 组合而成,但是在 CompositeByteBuf 内部保存着每个 ByteBuf 的引用关系,从逻辑上构成一个整体。比较常见的像 HTTP 协议数据可以分为<strong>头部信息 header</strong>和<strong>消息体数据 body</strong>,分别存在两个不同的 ByteBuf 中,通常我们需要将两个 ByteBuf 合并成一个完整的协议数据进行发送,可以使用如下方式完成:</p>
|
||
|
||
<pre><code>ByteBuf httpBuf = Unpooled.buffer(header.readableBytes() + body.readableBytes());
|
||
|
||
|
||
|
||
httpBuf.writeBytes(header);
|
||
|
||
|
||
|
||
httpBuf.writeBytes(body);
|
||
|
||
</code></pre>
|
||
|
||
<p>可以看出,如果想实现 header 和 body 这两个 ByteBuf 的合并,需要先初始化一个新的 httpBuf,然后再将 header 和 body 分别拷贝到新的 httpBuf。合并过程中涉及两次 CPU 拷贝,这非常浪费性能。如果使用 CompositeByteBuf 如何实现类似的需求呢?如下所示:</p>
|
||
|
||
<pre><code>CompositeByteBuf httpBuf = Unpooled.compositeBuffer();
|
||
|
||
|
||
|
||
httpBuf.addComponents(true, header, body);
|
||
|
||
</code></pre>
|
||
|
||
<p>CompositeByteBuf 通过调用 addComponents() 方法来添加多个 ByteBuf,但是底层的 byte 数组是复用的,不会发生内存拷贝。但对于用户来说,它可以当作一个整体进行操作。那么 CompositeByteBuf 内部是如何存放这些 ByteBuf,并且如何进行合并的呢?我们先通过一张图看下 CompositeByteBuf 的内部结构:</p>
|
||
|
||
<p><img src="assets/Ciqc1F_Qb3SAP4vUAAZG1WvALhY410.png" alt="Drawing 3.png" /></p>
|
||
|
||
<p>从图上可以看出,CompositeByteBuf 内部维护了一个 Components 数组。在每个 Component 中存放着不同的 ByteBuf,各个 ByteBuf 独立维护自己的读写索引,而 CompositeByteBuf 自身也会单独维护一个读写索引。由此可见,Component 是实现 CompositeByteBuf 的关键所在,下面看下 Component 结构定义:</p>
|
||
|
||
<pre><code>private static final class Component {
|
||
|
||
|
||
|
||
final ByteBuf srcBuf; // 原始的 ByteBuf
|
||
|
||
|
||
|
||
final ByteBuf buf; // srcBuf 去除包装之后的 ByteBuf
|
||
|
||
|
||
|
||
int srcAdjustment; // CompositeByteBuf 的起始索引相对于 srcBuf 读索引的偏移
|
||
|
||
|
||
|
||
int adjustment; // CompositeByteBuf 的起始索引相对于 buf 的读索引的偏移
|
||
|
||
|
||
|
||
int offset; // Component 相对于 CompositeByteBuf 的起始索引位置
|
||
|
||
|
||
|
||
int endOffset; // Component 相对于 CompositeByteBuf 的结束索引位置
|
||
|
||
|
||
|
||
// 省略其他代码
|
||
|
||
|
||
|
||
}
|
||
|
||
</code></pre>
|
||
|
||
<p>为了方便理解上述 Component 中的属性含义,我同样以 HTTP 协议中 header 和 body 为示例,通过一张图来描述 CompositeByteBuf 组合后其中 Component 的布局情况,如下所示:</p>
|
||
|
||
<p><img src="assets/Ciqc1F_Qb3yAUwbLAAVl7ZwmfJ0669.png" alt="Drawing 4.png" /></p>
|
||
|
||
<p>从图中可以看出,header 和 body 分别对应两个 ByteBuf,假设 ByteBuf 的内容分别为 "header" 和 "body",那么 header ByteBuf 中 offset~endOffset 为 0~6,body ByteBuf 对应的 offset~endOffset 为 0~10。由此可见,Component 中的 offset 和 endOffset 可以表示当前 ByteBuf 可以读取的范围,通过 offset 和 endOffset 可以将每一个 Component 所对应的 ByteBuf 连接起来,形成一个逻辑整体。</p>
|
||
|
||
<p>此外 Component 中 srcAdjustment 和 adjustment 表示 CompositeByteBuf 起始索引相对于 ByteBuf 读索引的偏移。初始 adjustment = readIndex - offset,这样通过 CompositeByteBuf 的起始索引就可以直接定位到 Component 中 ByteBuf 的读索引位置。当 header ByteBuf 读取 1 个字节,body ByteBuf 读取 2 个字节,此时每个 Component 的属性又会发生什么变化呢?如下图所示。</p>
|
||
|
||
<p><img src="assets/CgqCHl_Qb4WAK864AAZiyrv77BY848.png" alt="Drawing 5.png" /></p>
|
||
|
||
<p>至此,CompositeByteBuf 的基本原理我们已经介绍完了,关于具体 CompositeByteBuf 数据操作的细节在这里就不做展开了,有兴趣的同学可以自己深入研究 CompositeByteBuf 的源码。</p>
|
||
|
||
<h4>Unpooled.wrappedBuffer 操作</h4>
|
||
|
||
<p>介绍完 CompositeByteBuf 之后,再来理解 Unpooled.wrappedBuffer 操作就非常容易了,Unpooled.wrappedBuffer 同时也是创建 CompositeByteBuf 对象的另一种推荐做法。</p>
|
||
|
||
<p>Unpooled 提供了一系列用于包装数据源的 wrappedBuffer 方法,如下所示:</p>
|
||
|
||
<p><img src="assets/CgqCHl_Qb46AeweXAAV1hNnjjTQ381.png" alt="Drawing 6.png" /></p>
|
||
|
||
<p>Unpooled.wrappedBuffer 方法可以将不同的数据源的一个或者多个数据包装成一个大的 ByteBuf 对象,其中数据源的类型包括 byte[]、ByteBuf、ByteBuffer。包装的过程中不会发生数据拷贝操作,包装后生成的 ByteBuf 对象和原始 ByteBuf 对象是共享底层的 byte 数组。</p>
|
||
|
||
<h4>ByteBuf.slice 操作</h4>
|
||
|
||
<p>ByteBuf.slice 和 Unpooled.wrappedBuffer 的逻辑正好相反,ByteBuf.slice 是将一个 ByteBuf 对象切分成多个共享同一个底层存储的 ByteBuf 对象。</p>
|
||
|
||
<p>ByteBuf 提供了两个 slice 切分方法:</p>
|
||
|
||
<pre><code>public ByteBuf slice();
|
||
|
||
|
||
|
||
public ByteBuf slice(int index, int length);
|
||
|
||
</code></pre>
|
||
|
||
<p>假设我们已经有一份完整的 HTTP 数据,可以通过 slice 方法切分获得 header 和 body 两个 ByteBuf 对象,对应的内容分别为 "header" 和 "body",实现方式如下:</p>
|
||
|
||
<pre><code>ByteBuf httpBuf = ...
|
||
|
||
|
||
|
||
ByteBuf header = httpBuf.slice(0, 6);
|
||
|
||
|
||
|
||
ByteBuf body = httpBuf.slice(6, 4);
|
||
|
||
</code></pre>
|
||
|
||
<p>通过 slice 切分后都会返回一个新的 ByteBuf 对象,而且新的对象有自己独立的 readerIndex、writerIndex 索引,如下图所示。由于新的 ByteBuf 对象与原始的 ByteBuf 对象数据是共享的,所以通过新的 ByteBuf 对象进行数据操作也会对原始 ByteBuf 对象生效。</p>
|
||
|
||
<p><img src="assets/Ciqc1F_QgzOAPobiAAKi9x9FxTM445.png" alt="图片8.png" /></p>
|
||
|
||
<h4>文件传输 FileRegion</h4>
|
||
|
||
<p>在 Netty 源码的 example 包中,提供了 FileRegion 的使用示例,以下代码片段摘自 FileServerHandler.java。</p>
|
||
|
||
<pre><code>@Override
|
||
|
||
|
||
|
||
public void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception {
|
||
|
||
|
||
|
||
RandomAccessFile raf = null;
|
||
|
||
|
||
|
||
long length = -1;
|
||
|
||
|
||
|
||
try {
|
||
|
||
|
||
|
||
raf = new RandomAccessFile(msg, "r");
|
||
|
||
|
||
|
||
length = raf.length();
|
||
|
||
|
||
|
||
} catch (Exception e) {
|
||
|
||
|
||
|
||
ctx.writeAndFlush("ERR: " + e.getClass().getSimpleName() + ": " + e.getMessage() + '\n');
|
||
|
||
|
||
|
||
return;
|
||
|
||
|
||
|
||
} finally {
|
||
|
||
|
||
|
||
if (length < 0 && raf != null) {
|
||
|
||
|
||
|
||
raf.close();
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
ctx.write("OK: " + raf.length() + '\n');
|
||
|
||
|
||
|
||
if (ctx.pipeline().get(SslHandler.class) == null) {
|
||
|
||
|
||
|
||
// SSL not enabled - can use zero-copy file transfer.
|
||
|
||
|
||
|
||
ctx.write(new DefaultFileRegion(raf.getChannel(), 0, length));
|
||
|
||
|
||
|
||
} else {
|
||
|
||
|
||
|
||
// SSL enabled - cannot use zero-copy file transfer.
|
||
|
||
|
||
|
||
ctx.write(new ChunkedFile(raf));
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
ctx.writeAndFlush("\n");
|
||
|
||
|
||
|
||
}
|
||
|
||
</code></pre>
|
||
|
||
<p>从 FileRegion 的使用示例可以看出,Netty 使用 FileRegion 实现文件传输的零拷贝。FileRegion 的默认实现类是 DefaultFileRegion,通过 DefaultFileRegion 将文件内容写入到 NioSocketChannel。那么 FileRegion 是如何实现零拷贝的呢?我们通过源码看看 FileRegion 到底使用了什么黑科技。</p>
|
||
|
||
<pre><code>public class DefaultFileRegion extends AbstractReferenceCounted implements FileRegion {
|
||
|
||
|
||
|
||
private final File f; // 传输的文件
|
||
|
||
|
||
|
||
private final long position; // 文件的起始位置
|
||
|
||
|
||
|
||
private final long count; // 传输的字节数
|
||
|
||
|
||
|
||
private long transferred; // 已经写入的字节数
|
||
|
||
|
||
|
||
private FileChannel file; // 文件对应的 FileChannel
|
||
|
||
@Override
|
||
|
||
|
||
|
||
public long transferTo(WritableByteChannel target, long position) throws IOException {
|
||
|
||
|
||
|
||
long count = this.count - position;
|
||
|
||
|
||
|
||
if (count < 0 || position < 0) {
|
||
|
||
|
||
|
||
throw new IllegalArgumentException(
|
||
|
||
|
||
|
||
"position out of range: " + position +
|
||
|
||
|
||
|
||
" (expected: 0 - " + (this.count - 1) + ')');
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
if (count == 0) {
|
||
|
||
|
||
|
||
return 0L;
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
if (refCnt() == 0) {
|
||
|
||
|
||
|
||
throw new IllegalReferenceCountException(0);
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
open();
|
||
|
||
|
||
|
||
long written = file.transferTo(this.position + position, count, target);
|
||
|
||
|
||
|
||
if (written > 0) {
|
||
|
||
|
||
|
||
transferred += written;
|
||
|
||
|
||
|
||
} else if (written == 0) {
|
||
|
||
|
||
|
||
validate(this, position);
|
||
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
return written;
|
||
|
||
|
||
|
||
}
|
||
|
||
// 省略其他代码
|
||
|
||
|
||
|
||
}
|
||
|
||
</code></pre>
|
||
|
||
<p>从源码可以看出,FileRegion 其实就是对 FileChannel 的包装,并没有什么特殊操作,底层使用的是 JDK NIO 中的 FileChannel#transferTo() 方法实现文件传输,所以 FileRegion 是操作系统级别的零拷贝,对于传输大文件会很有帮助。</p>
|
||
|
||
<p>到此为止,Netty 相关的零拷贝技术都已经介绍完了,可以看出 Netty 对于 ByteBuf 做了更多精进的设计和优化。</p>
|
||
|
||
<h3>总结</h3>
|
||
|
||
<p>零拷贝是网络编程中一种常用的技术,可以用于优化网络数据传输的性能。本文介绍了操作系统 Linux 和 Netty 中的零拷贝技术,Netty 除了支持操作系统级别的零拷贝,更多提供了面向用户态的零拷贝特性,主要体现在 5 个方面:堆外内存、CompositeByteBuf、Unpooled.wrappedBuffer、ByteBuf.slice 以及 FileRegion。以操作系统的角度来看,零拷贝是一个广义的概念,可以认为只要能够减少不必要的 CPU 拷贝,都可以理解为是零拷贝。</p>
|
||
|
||
<p>最后,留一个思考题,使用具备零拷贝特性的 transfer() 方法拷贝文件,一定会比传统 I/O 的方式更高效吗?</p>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div>
|
||
|
||
<div style="float: left">
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/15 轻量级对象回收站:Recycler 对象池技术解析.md.html">上一页</a>
|
||
|
||
</div>
|
||
|
||
<div style="float: right">
|
||
|
||
<a href="/专栏/Netty 核心原理剖析与 RPC 实践-完/17 源码篇:从 Linux 出发深入剖析服务端启动流程.md.html">下一页</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
|
||
</div>
|
||
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"7099736208293d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
|
||
</body>
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
|
||
<script>
|
||
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
|
||
|
||
function gtag() {
|
||
|
||
dataLayer.push(arguments);
|
||
|
||
}
|
||
|
||
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-NPSEEVD756');
|
||
|
||
var path = window.location.pathname
|
||
|
||
var cookie = getCookie("lastPath");
|
||
|
||
console.log(path)
|
||
|
||
if (path.replace("/", "") === "") {
|
||
|
||
if (cookie.replace("/", "") !== "") {
|
||
|
||
console.log(cookie)
|
||
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
setCookie("lastPath", path)
|
||
|
||
}
|
||
|
||
|
||
|
||
function setCookie(cname, cvalue) {
|
||
|
||
var d = new Date();
|
||
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
|
||
var expires = "expires=" + d.toGMTString();
|
||
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
|
||
}
|
||
|
||
|
||
|
||
function getCookie(cname) {
|
||
|
||
var name = cname + "=";
|
||
|
||
var ca = document.cookie.split(';');
|
||
|
||
for (var i = 0; i < ca.length; i++) {
|
||
|
||
var c = ca[i].trim();
|
||
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
|
||
}
|
||
|
||
return "";
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
</html>
|
||
|