mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-17 16:56:40 +08:00
714 lines
42 KiB
HTML
714 lines
42 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>认识 MySQL 和 Redis 的数据一致性问题.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
|
||
<a href="/文章/AQS 万字图文全面解析.md.html">AQS 万字图文全面解析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Docker 镜像构建原理及源码分析.md.html">Docker 镜像构建原理及源码分析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/ElasticSearch 小白从入门到精通.md.html">ElasticSearch 小白从入门到精通.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/JVM CPU Profiler技术原理及源码深度解析.md.html">JVM CPU Profiler技术原理及源码深度解析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/JVM 垃圾收集器.md.html">JVM 垃圾收集器.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/JVM 面试的 30 个知识点.md.html">JVM 面试的 30 个知识点.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java IO 体系、线程模型大总结.md.html">Java IO 体系、线程模型大总结.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java NIO浅析.md.html">Java NIO浅析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java 面试题集锦(网络篇).md.html">Java 面试题集锦(网络篇).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java-直接内存 DirectMemory 详解.md.html">Java-直接内存 DirectMemory 详解.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中9种常见的CMS GC问题分析与解决(上).md.html">Java中9种常见的CMS GC问题分析与解决(上).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中9种常见的CMS GC问题分析与解决(下).md.html">Java中9种常见的CMS GC问题分析与解决(下).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中的SPI.md.html">Java中的SPI.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java中的ThreadLocal.md.html">Java中的ThreadLocal.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java线程池实现原理及其在美团业务中的实践.md.html">Java线程池实现原理及其在美团业务中的实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Java魔法类:Unsafe应用解析.md.html">Java魔法类:Unsafe应用解析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Kafka 源码阅读笔记.md.html">Kafka 源码阅读笔记.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理.md.html">Kafka、ActiveMQ、RabbitMQ、RocketMQ 区别以及高可用原理.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB Buffer Pool.md.html">MySQL · 引擎特性 · InnoDB Buffer Pool.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB IO子系统.md.html">MySQL · 引擎特性 · InnoDB IO子系统.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB 事务系统.md.html">MySQL · 引擎特性 · InnoDB 事务系统.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB 同步机制.md.html">MySQL · 引擎特性 · InnoDB 同步机制.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB 数据页解析.md.html">MySQL · 引擎特性 · InnoDB 数据页解析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · InnoDB崩溃恢复.md.html">MySQL · 引擎特性 · InnoDB崩溃恢复.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL · 引擎特性 · 临时表那些事儿.md.html">MySQL · 引擎特性 · 临时表那些事儿.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 主从复制 半同步复制.md.html">MySQL 主从复制 半同步复制.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 主从复制 基于GTID复制.md.html">MySQL 主从复制 基于GTID复制.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 主从复制.md.html">MySQL 主从复制.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 事务日志(redo log和undo log).md.html">MySQL 事务日志(redo log和undo log).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 亿级别数据迁移实战代码分享.md.html">MySQL 亿级别数据迁移实战代码分享.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 从一条数据说起-InnoDB行存储数据结构.md.html">MySQL 从一条数据说起-InnoDB行存储数据结构.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 地基基础:事务和锁的面纱.md.html">MySQL 地基基础:事务和锁的面纱.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 地基基础:数据字典.md.html">MySQL 地基基础:数据字典.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 地基基础:数据库字符集.md.html">MySQL 地基基础:数据库字符集.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 性能优化:碎片整理.md.html">MySQL 性能优化:碎片整理.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 故障诊断:一个 ALTER TALBE 执行了很久,你慌不慌?.md.html">MySQL 故障诊断:一个 ALTER TALBE 执行了很久,你慌不慌?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 故障诊断:如何在日志中轻松定位大事务.md.html">MySQL 故障诊断:如何在日志中轻松定位大事务.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 故障诊断:教你快速定位加锁的 SQL.md.html">MySQL 故障诊断:教你快速定位加锁的 SQL.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 日志详解.md.html">MySQL 日志详解.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL 的半同步是什么?.md.html">MySQL 的半同步是什么?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL中的事务和MVCC.md.html">MySQL中的事务和MVCC.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL事务_事务隔离级别详解.md.html">MySQL事务_事务隔离级别详解.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL优化:优化 select count().md.html">MySQL优化:优化 select count().md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL共享锁、排他锁、悲观锁、乐观锁.md.html">MySQL共享锁、排他锁、悲观锁、乐观锁.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/MySQL的MVCC(多版本并发控制).md.html">MySQL的MVCC(多版本并发控制).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/QingStor 对象存储架构设计及最佳实践.md.html">QingStor 对象存储架构设计及最佳实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/RocketMQ 面试题集锦.md.html">RocketMQ 面试题集锦.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/SnowFlake 雪花算法生成分布式 ID.md.html">SnowFlake 雪花算法生成分布式 ID.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring Boot 2.x 结合 k8s 实现分布式微服务架构.md.html">Spring Boot 2.x 结合 k8s 实现分布式微服务架构.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring Boot 教程:如何开发一个 starter.md.html">Spring Boot 教程:如何开发一个 starter.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring MVC 原理.md.html">Spring MVC 原理.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring MyBatis和Spring整合的奥秘.md.html">Spring MyBatis和Spring整合的奥秘.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring 帮助你更好的理解Spring循环依赖.md.html">Spring 帮助你更好的理解Spring循环依赖.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring 循环依赖及解决方式.md.html">Spring 循环依赖及解决方式.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Spring中眼花缭乱的BeanDefinition.md.html">Spring中眼花缭乱的BeanDefinition.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/Vert.x 基础入门.md.html">Vert.x 基础入门.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/eBay 的 Elasticsearch 性能调优实践.md.html">eBay 的 Elasticsearch 性能调优实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/不可不说的Java“锁”事.md.html">不可不说的Java“锁”事.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/互联网并发限流实战.md.html">互联网并发限流实战.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/从ReentrantLock的实现看AQS的原理及应用.md.html">从ReentrantLock的实现看AQS的原理及应用.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/从SpringCloud开始,聊微服务架构.md.html">从SpringCloud开始,聊微服务架构.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/全面了解 JDK 线程池实现原理.md.html">全面了解 JDK 线程池实现原理.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式一致性理论与算法.md.html">分布式一致性理论与算法.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式一致性算法 Raft.md.html">分布式一致性算法 Raft.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式唯一 ID 解析.md.html">分布式唯一 ID 解析.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/分布式链路追踪:集群管理设计.md.html">分布式链路追踪:集群管理设计.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/动态代理种类及原理,你知道多少?.md.html">动态代理种类及原理,你知道多少?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/响应式架构与 RxJava 在有赞零售的实践.md.html">响应式架构与 RxJava 在有赞零售的实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/大数据算法——布隆过滤器.md.html">大数据算法——布隆过滤器.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/如何优雅地记录操作日志?.md.html">如何优雅地记录操作日志?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/如何设计一个亿级消息量的 IM 系统.md.html">如何设计一个亿级消息量的 IM 系统.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/异步网络模型.md.html">异步网络模型.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/当我们在讨论CQRS时,我们在讨论些神马?.md.html">当我们在讨论CQRS时,我们在讨论些神马?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/彻底理解 MySQL 的索引机制.md.html">彻底理解 MySQL 的索引机制.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/最全的 116 道 Redis 面试题解答.md.html">最全的 116 道 Redis 面试题解答.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/有赞权限系统(SAM).md.html">有赞权限系统(SAM).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/有赞零售中台建设方法的探索与实践.md.html">有赞零售中台建设方法的探索与实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/服务注册与发现原理剖析(Eureka、Zookeeper、Nacos).md.html">服务注册与发现原理剖析(Eureka、Zookeeper、Nacos).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/深入浅出Cache.md.html">深入浅出Cache.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/深入理解 MySQL 底层实现.md.html">深入理解 MySQL 底层实现.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/漫画讲解 git rebase VS git merge.md.html">漫画讲解 git rebase VS git merge.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/生成浏览器唯一稳定 ID 的探索.md.html">生成浏览器唯一稳定 ID 的探索.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/缓存 如何保证缓存与数据库的双写一致性?.md.html">缓存 如何保证缓存与数据库的双写一致性?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/网易严选怎么做全链路监控的?.md.html">网易严选怎么做全链路监控的?.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/美团万亿级 KV 存储架构与实践.md.html">美团万亿级 KV 存储架构与实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/美团点评Kubernetes集群管理实践.md.html">美团点评Kubernetes集群管理实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/美团百亿规模API网关服务Shepherd的设计与实现.md.html">美团百亿规模API网关服务Shepherd的设计与实现.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/解读《阿里巴巴 Java 开发手册》背后的思考.md.html">解读《阿里巴巴 Java 开发手册》背后的思考.md.html</a>
|
||
</li>
|
||
<li>
|
||
<a class="current-tab" href="/文章/认识 MySQL 和 Redis 的数据一致性问题.md.html">认识 MySQL 和 Redis 的数据一致性问题.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/进阶:Dockerfile 高阶使用指南及镜像优化.md.html">进阶:Dockerfile 高阶使用指南及镜像优化.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/铁总在用的高性能分布式缓存计算框架 Geode.md.html">铁总在用的高性能分布式缓存计算框架 Geode.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/阿里云PolarDB及其共享存储PolarFS技术实现分析(上).md.html">阿里云PolarDB及其共享存储PolarFS技术实现分析(上).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/阿里云PolarDB及其共享存储PolarFS技术实现分析(下).md.html">阿里云PolarDB及其共享存储PolarFS技术实现分析(下).md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/面试最常被问的 Java 后端题.md.html">面试最常被问的 Java 后端题.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/领域驱动设计在互联网业务开发中的实践.md.html">领域驱动设计在互联网业务开发中的实践.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/领域驱动设计的菱形对称架构.md.html">领域驱动设计的菱形对称架构.md.html</a>
|
||
</li>
|
||
<li>
|
||
|
||
<a href="/文章/高效构建 Docker 镜像的最佳实践.md.html">高效构建 Docker 镜像的最佳实践.md.html</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>认识 MySQL 和 Redis 的数据一致性问题</h1>
|
||
<h3><strong>1. 什么是数据的一致性</strong></h3>
|
||
<p>“数据一致”一般指的是:缓存中有数据,缓存的数据值 = 数据库中的值。</p>
|
||
<p>但根据缓存中是有数据为依据,则”一致“可以包含两种情况:</p>
|
||
<ul>
|
||
<li>缓存中有数据,缓存的数据值 = 数据库中的值(需均为最新值,本文将“旧值的一致”归类为“不一致状态”)</li>
|
||
<li>缓存中本没有数据,数据库中的值 = 最新值(有请求查询数据库时,会将数据写入缓存,则变为上面的“一致”状态)</li>
|
||
</ul>
|
||
<p>”数据不一致“:缓存的数据值 ≠ 数据库中的值;缓存或者数据库中存在旧值,导致其他线程读到旧数据</p>
|
||
<h3><strong>2. 数据不一致情况及应对策略</strong></h3>
|
||
<p>根据是否接收写请求,可以把缓存分成读写缓存和只读缓存。</p>
|
||
<p>只读缓存:只在缓存进行数据查找,即使用 “更新数据库+删除缓存” 策略;</p>
|
||
<p>读写缓存:需要在缓存中对数据进行增删改查,即使用 “更新数据库+更新缓存”策略。</p>
|
||
<h3><strong>2.1 针对只读缓存(更新数据库+删除缓存)</strong></h3>
|
||
<p>只读缓存:新增数据时,直接写入数据库;更新(修改/删除)数据时,先删除缓存。 后续,访问这些增删改的数据时,会发生缓存缺失,进而查询数据库,更新缓存。</p>
|
||
<ul>
|
||
<li><strong>新增数据时</strong> ,写入数据库;访问数据时,缓存缺失,查数据库,更新缓存(始终是处于”数据一致“的状态,不会发生数据不一致性问题)</li>
|
||
</ul>
|
||
<p><img src="assets/v2-743a97e88d1d0bf906b7e1e3bec7a99d_b.jpg" alt="img" /></p>
|
||
<ul>
|
||
<li><strong>更新(修改/删除)数据时</strong> ,会有个时序问题:更新数据库与删除缓存的顺序(这个过程会发生数据不一致性问题)</li>
|
||
</ul>
|
||
<p><img src="assets/v2-34d9206cb3158ab96e5c5462de05e817_b.jpg" alt="img" /></p>
|
||
<p>在更新数据的过程中,可能会有如下问题:</p>
|
||
<ul>
|
||
<li>无并发请求下,其中一个操作失败的情况</li>
|
||
<li>并发请求下,其他线程可能会读到旧值</li>
|
||
</ul>
|
||
<p>因此,要想达到数据一致性,需要保证两点:</p>
|
||
<ul>
|
||
<li>无并发请求下,保证 A 和 B 步骤都能成功执行</li>
|
||
<li>并发请求下,在 A 和 B 步骤的间隔中,避免或消除其他线程的影响</li>
|
||
</ul>
|
||
<p>接下来,我们针对有/无并发场景,进行分析并使用不同的策略。</p>
|
||
<h3><strong>A. 无并发情况</strong></h3>
|
||
<p>无并发请求下,在更新数据库和删除缓存值的过程中,因为操作被拆分成两步,那么就很有可能存在“步骤 1 成功,步骤 2 失败” 的情况发生(由于单线程中步骤 1 和步骤 2 是串行执行的,不太可能会发生 “步骤 2 成功,步骤 1 失败” 的情况)。</p>
|
||
<p><strong>(1) 先删除缓存,再更新数据库</strong></p>
|
||
<p><img src="assets/v2-6a6d482d7f275d3dde89e134af9e7858_b.jpg" alt="img" /></p>
|
||
<p><strong>(2) 先更新数据库,再删除缓存</strong></p>
|
||
<p><img src="assets/v2-6f951d6291001bf7e9bbc6f2e856a1db_b.jpg" alt="img" /></p>
|
||
<p><img src="assets/v2-f4e7a92c44a67694ad91ca0eb1f189aa_b.jpg" alt="img" /></p>
|
||
<p><strong>解决策略:</strong></p>
|
||
<p><strong>a.消息队列+异步重试</strong></p>
|
||
<p>无论使用哪一种执行时序,可以在执行步骤 1 时,将步骤 2 的请求写入消息队列,当步骤 2 失败时,就可以使用重试策略,对失败操作进行 “补偿”。</p>
|
||
<p><img src="assets/v2-6d6dd4dc404567c1402eaba8a12f8f48_b.jpg" alt="img" /></p>
|
||
<p><strong>具体步骤如下:</strong></p>
|
||
<ol>
|
||
<li>把要删除缓存值或者是要更新数据库值操作生成消息,暂存到消息队列中(例如使用 Kafka 消息队列);</li>
|
||
<li>当删除缓存值或者是更新数据库值操作成功时,把这些消息从消息队列中去除(丢弃),以免重复操作;</li>
|
||
<li>当删除缓存值或者是更新数据库值操作失败时,执行失败策略,重试服务从消息队列中重新读取(消费)这些消息,然后再次进行删除或更新;</li>
|
||
<li>删除或者更新失败时,需要再次进行重试,重试超过的一定次数,向业务层发送报错信息。</li>
|
||
</ol>
|
||
<p><strong>b.订阅 Binlog 变更日志</strong></p>
|
||
<ul>
|
||
<li>创建更新缓存服务,接收数据变更的 MQ 消息,然后消费消息,更新/删除 Redis 中的缓存数据;</li>
|
||
<li>使用 Binlog 实时更新/删除 Redis 缓存。利用 Canal,即将负责更新缓存的服务伪装成一个 MySQL 的从节点,从 MySQL 接收 Binlog,解析 Binlog 之后,得到实时的数据变更信息,然后根据变更信息去更新/删除 Redis 缓存;</li>
|
||
<li>MQ+Canal 策略,将 Canal Server 接收到的 Binlog 数据直接投递到 MQ 进行解耦,使用 MQ 异步消费 Binlog 日志,以此进行数据同步;</li>
|
||
</ul>
|
||
<p>不管用 MQ/Canal 或者 MQ+Canal 的策略来异步更新缓存,对整个更新服务的数据可靠性和实时性要求都比较高,如果产生数据丢失或者更新延时情况,会造成 MySQL 和 Redis 中的数据不一致。因此,使用这种策略时,需要考虑出现不同步问题时的降级或补偿方案。</p>
|
||
<h3><strong>B. 高并发情况</strong></h3>
|
||
<p>使用以上策略后,可以保证在单线程/无并发场景下的数据一致性。但是,在高并发场景下,由于数据库层面的读写并发,会引发的数据库与缓存数据不一致的问题(本质是后发生的读请求先返回了)</p>
|
||
<p><strong>(1) 先删除缓存,再更新数据库</strong></p>
|
||
<p>假设线程 A 删除缓存值后,由于网络延迟等原因导致未及更新数据库,而此时,线程 B 开始读取数据时会发现缓存缺失,进而去查询数据库。而当线程 B 从数据库读取完数据、更新了缓存后,线程 A 才开始更新数据库,此时,会导致缓存中的数据是旧值,而数据库中的是最新值,产生“数据不一致”。其本质就是,本应后发生的“B 线程-读请求” 先于 “A 线程-写请求” 执行并返回了。</p>
|
||
<p><img src="assets/v2-638ab1dea36af1b57a7ccf2f5a09aa2b_b.jpg" alt="img" /></p>
|
||
<p>或者</p>
|
||
<p><img src="assets/v2-797a59a095fa8e4d7b0e61d95b928c6a_b.jpg" alt="img" /></p>
|
||
<p><strong>解决策略:</strong></p>
|
||
<p><strong>a.设置缓存过期时间 + 延时双删</strong></p>
|
||
<p>通过设置缓存过期时间,若发生上述淘汰缓存失败的情况,则在缓存过期后,读请求仍然可以从 DB 中读取最新数据并更新缓存,可减小数据不一致的影响范围。虽然在一定时间范围内数据有差异,但可以保证数据的最终一致性。</p>
|
||
<p>此外,还可以通过延时双删进行保障:在线程 A 更新完数据库值以后,让它先 sleep 一小段时间,确保线程 B 能够先从数据库读取数据,再把缺失的数据写入缓存,然后,线程 A 再进行删除。后续,其它线程读取数据时,发现缓存缺失,会从数据库中读取最新值。</p>
|
||
<pre><code class="language-text">redis.delKey(X)
|
||
db.update(X)
|
||
Thread.sleep(N)
|
||
redis.delKey(X)
|
||
</code></pre>
|
||
<p>sleep 时间:在业务程序运行的时候,统计下线程读数据和写缓存的操作时间,以此为基础来进行估算</p>
|
||
<p><img src="assets/v2-5ce3b6ddcae7a203a983fb74124e6f2e_b.jpg" alt="img" /></p>
|
||
<p><strong>注意</strong>:如果难以接受 sleep 这种写法,可以使用延时队列进行替代。</p>
|
||
<p>先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以用缓存空结果、布隆过滤器进行解决。</p>
|
||
<p><strong>(2) 先更新数据库,再删除缓存</strong></p>
|
||
<p>如果线程 A 更新了数据库中的值,但还没来得及删除缓存值,线程 B 就开始读取数据了,那么此时,线程 B 查询缓存时,发现缓存命中,就会直接从缓存中读取旧值。其本质也是,本应后发生的“B 线程-读请求” 先于 “A 线程-删除缓存” 执行并返回了。</p>
|
||
<p><img src="assets/v2-17531f4ab67f9f3cd8450854e740bf46_b.jpg" alt="img" /></p>
|
||
<p>或者,在”先更新数据库,再删除缓存”方案下,“读写分离 + 主从库延迟”也会导致不一致:</p>
|
||
<p><img src="assets/v2-862b9e280ded89432847506d1d70f65a_b.jpg" alt="img" /></p>
|
||
<p><strong>解决方案:</strong></p>
|
||
<p><strong>a.延迟消息</strong></p>
|
||
<p>凭借经验发送「延迟消息」到队列中,延迟删除缓存,同时也要控制主从库延迟,尽可能降低不一致发生的概率</p>
|
||
<p><strong>b.订阅 binlog,异步删除</strong></p>
|
||
<p>通过数据库的 binlog 来异步淘汰 key,利用工具(canal)将 binlog 日志采集发送到 MQ 中,然后通过 ACK 机制确认处理删除缓存。</p>
|
||
<p><strong>c.删除消息写入数据库</strong></p>
|
||
<p>通过比对数据库中的数据,进行删除确认 先更新数据库再删除缓存,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以用缓存空结果、布隆过滤器进行解决。</p>
|
||
<p><strong>d.加锁</strong></p>
|
||
<p>更新数据时,加写锁;查询数据时,加读锁 保证两步操作的“原子性”,使得操作可以串行执行。“原子性”的本质是什么?不可分割只是外在表现,其本质是多个资源间有一致性的要求,操作的中间状态对外不可见。</p>
|
||
<p><img src="assets/v2-b14eed88789caca84a7cb25eaad54fb0_b.jpg" alt="img" /></p>
|
||
<p><strong>建议:</strong></p>
|
||
<p>优先使用“先更新数据库再删除缓存”的执行时序,原因主要有两个:</p>
|
||
<ol>
|
||
<li>先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力;</li>
|
||
<li>业务应用中读取数据库和写缓存的时间有时不好估算,进而导致延迟双删中的 sleep 时间不好设置。</li>
|
||
</ol>
|
||
<h3><strong>2.2 针对读写缓存(更新数据库+更新缓存)</strong></h3>
|
||
<p>读写缓存:增删改在缓存中进行,并采取相应的回写策略,同步数据到数据库中</p>
|
||
<ul>
|
||
<li>同步直写:使用事务,保证缓存和数据更新的原子性,并进行失败重试(如果 Redis 本身出现故障,会降低服务的性能和可用性)</li>
|
||
<li>异步回写:写缓存时不同步写数据库,等到数据从缓存中淘汰时,再写回数据库(没写回数据库前,缓存发生故障,会造成数据丢失) 该策略在秒杀场中有见到过,业务层直接对缓存中的秒杀商品库存信息进行操作,一段时间后再回写数据库。</li>
|
||
</ul>
|
||
<p>一致性:同步直写 > 异步回写 因此,对于读写缓存,要保持数据强一致性的主要思路是:利用同步直写 同步直写也存在两个操作的时序问题:更新数据库和更新缓存</p>
|
||
<h3><strong>A. 无并发情况</strong></h3>
|
||
<p><img src="assets/v2-a7d9ce347ea85a557ee9cd21d873a736_b.jpg" alt="img" /></p>
|
||
<h3><strong>B. 高并发情况</strong></h3>
|
||
<p>有四种场景会造成数据不一致:</p>
|
||
<p><img src="assets/v2-d4a568661a04f769e17238ff44513eb0_b.jpg" alt="img" /></p>
|
||
<p>针对场景 1 和 2 的解决方案是:保存请求对缓存的读取记录,延时消息比较,发现不一致后,做业务补偿 针对场景 3 和 4 的解决方案是:对于写请求,需要配合分布式锁使用。写请求进来时,针对同一个资源的修改操作,先加分布式锁,保证同一时间只有一个线程去更新数据库和缓存;没有拿到锁的线程把操作放入到队列中,延时处理。用这种方式保证多个线程操作同一资源的顺序性,以此保证一致性。</p>
|
||
<p><img src="assets/v2-b41f38d2c55bbfba734d3463c2d6ce46_b.jpg" alt="img" /></p>
|
||
<p>其中,分布式锁的实现可以使用以下策略:</p>
|
||
<p><img src="assets/v2-ea428da2331b4f04f65fb720ac80a829_b.jpg" alt="img" /></p>
|
||
<h3><strong>2.3 强一致性策略</strong></h3>
|
||
<p>上述策略只能保证数据的最终一致性。 要想做到强一致,最常见的方案是 2PC、3PC、Paxos、Raft 这类一致性协议,但它们的性能往往比较差,而且这些方案也比较复杂,还要考虑各种容错问题。 如果业务层要求必须读取数据的强一致性,可以采取以下策略:</p>
|
||
<p><strong>(1)暂存并发读请求</strong></p>
|
||
<p>在更新数据库时,先在 Redis 缓存客户端暂存并发读请求,等数据库更新完、缓存值删除后,再读取数据,从而保证数据一致性。</p>
|
||
<p><strong>(2)串行化</strong></p>
|
||
<p>读写请求入队列,工作线程从队列中取任务来依次执行</p>
|
||
<ol>
|
||
<li>修改服务 Service 连接池,id 取模选取服务连接,能够保证同一个数据的读写都落在同一个后端服务上</li>
|
||
<li>修改数据库 DB 连接池,id 取模选取 DB 连接,能够保证同一个数据的读写在数据库层面是串行的</li>
|
||
</ol>
|
||
<p><strong>(3)使用 Redis 分布式读写锁</strong></p>
|
||
<p>将淘汰缓存与更新库表放入同一把写锁中,与其它读请求互斥,防止其间产生旧数据。读写互斥、写写互斥、读读共享,可满足读多写少的场景数据一致,也保证了并发性。并根据逻辑平均运行时间、响应超时时间来确定过期时间。</p>
|
||
<pre><code class="language-java">public void write() {
|
||
Lock writeLock = redis.getWriteLock(lockKey);
|
||
writeLock.lock();
|
||
try {
|
||
redis.delete(key);
|
||
db.update(record);
|
||
} finally {
|
||
writeLock.unlock();
|
||
}
|
||
}
|
||
public void read() {
|
||
if (caching) {
|
||
return;
|
||
}
|
||
// no cache
|
||
Lock readLock = redis.getReadLock(lockKey);
|
||
readLock.lock();
|
||
try {
|
||
record = db.get();
|
||
} finally {
|
||
readLock.unlock();
|
||
}
|
||
redis.set(key, record);
|
||
}
|
||
</code></pre>
|
||
<h3><strong>2.4 小结</strong></h3>
|
||
<p><img src="assets/v2-34125bb8924b7c221739ceaae8f936e2_b.jpg" alt="img" /></p>
|
||
<p>针对读写缓存时:同步直写,更新数据库+更新缓存</p>
|
||
<p><img src="assets/v2-0794689daefbbab6f3b9230075d68954_b.jpg" alt="img" /></p>
|
||
<p>针对只读缓存时:更新数据库+删除缓存</p>
|
||
<p><img src="assets/v2-c71d826fb485bfa2312d4588df60d751_b.jpg" alt="img" /></p>
|
||
<p><strong>较为通用的一致性策略拟定:</strong></p>
|
||
<p>在并发场景下,使用 “更新数据库 + 更新缓存” 需要用分布式锁保证缓存和数据一致性,且可能存在”缓存资源浪费“和”机器性能浪费“的情况;一般推荐使用 “更新数据库 + 删除缓存” 的方案。如果根据需要,热点数据较多,可以使用 “更新数据库 + 更新缓存” 策略。</p>
|
||
<p>在 “更新数据库 + 删除缓存” 的方案中,推荐使用推荐用 “先更新数据库,再删除缓存” 策略,因为先删除缓存可能会导致大量请求落到数据库,而且延迟双删的时间很难评估。 在 “先更新数据库,再删除缓存” 策略中,可以使用“消息队列+重试机制” 的方案保证缓存的删除。 并通过 “订阅 binlog” 进行缓存比对,加上一层保障。</p>
|
||
<p>此外,需要通过初始化缓存预热、多数据源触发、延迟消息比对等策略进行辅助和补偿。 【多种数据更新触发源:定时任务扫描,业务系统 MQ、binlog 变更 MQ,相互之间作为互补来保证数据不会漏更新】</p>
|
||
<h3><strong>3. 数据一致性中需要注意的其他问题有哪些?</strong></h3>
|
||
<p><strong>(1) k-v 大小的合理设置</strong></p>
|
||
<blockquote>
|
||
<p><strong>Redis key 大小设计:</strong> 由于网络的一次传输 MTU 最大为 1500 字节,所以为了保证高效的性能,建议单个 k-v 大小不超过 1KB,一次网络传输就能完成,避免多次网络交互;k-v 是越小性能越好 <strong>Redis 热 key:</strong>(1) 当业务遇到单个读热 key,通过增加副本来提高读能力或是用 hashtag 把 key 存多份在多个分片中;(2)当业务遇到单个写热 key,需业务拆分这个 key 的功能,属于设计不合理- 当业务遇到热分片,即多个热 key 在同一个分片上导致单分片 cpu 高,可通过 hashtag 方式打散</p>
|
||
</blockquote>
|
||
<p><strong>[引自腾讯云技术分享]</strong></p>
|
||
<p><strong>(2 )避免其他问题导致缓存服务器崩溃,进而简直导致数据一致性策略失效</strong> 缓存穿透、缓存击穿、缓存雪崩、机器故障等问题</p>
|
||
<p><img src="assets/v2-70b01bc5d80e67981e8904e95860ae00_b.jpg" alt="img" /></p>
|
||
<p><strong>(3)方案选定的思路</strong></p>
|
||
<ol>
|
||
<li>确定缓存类型(读写/只读)</li>
|
||
<li>确定一致性级别</li>
|
||
<li>确定同步/异步方式</li>
|
||
<li>选定缓存流程</li>
|
||
<li>补充细节</li>
|
||
</ol>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/文章/解读《阿里巴巴 Java 开发手册》背后的思考.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/文章/进阶:Dockerfile 高阶使用指南及镜像优化.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70998081285a8b66","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
</script>
|
||
</html>
|