mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-30 23:26:43 +08:00
1147 lines
35 KiB
HTML
1147 lines
35 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
||
<head>
|
||
|
||
<head>
|
||
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
|
||
<link rel="icon" href="/static/favicon.png">
|
||
|
||
<title>03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html</title>
|
||
|
||
<!-- Spectre.css framework -->
|
||
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
|
||
<!-- theme css & js -->
|
||
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
|
||
</head>
|
||
|
||
|
||
|
||
<body>
|
||
|
||
|
||
|
||
<div class="book-container">
|
||
|
||
<div class="book-sidebar">
|
||
|
||
<div class="book-brand">
|
||
|
||
<a href="/">
|
||
|
||
<img src="/static/favicon.png">
|
||
|
||
<span>技术文章摘抄</span>
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div class="book-menu uncollapsible">
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="../">上一级</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/00 开篇词 为什么你需要学习计算机组成原理?.md.html">00 开篇词 为什么你需要学习计算机组成原理?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/01 冯·诺依曼体系结构:计算机组成的金字塔.md.html">01 冯·诺依曼体系结构:计算机组成的金字塔.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">02 给你一张知识地图,计算机组成原理应该这么学.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
<a class="current-tab" href="/专栏/深入浅出计算机组成原理/03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html">03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html</a>
|
||
|
||
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/05 计算机指令:让我们试试用纸带编程.md.html">05 计算机指令:让我们试试用纸带编程.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/06 指令跳转:原来if...else就是goto.md.html">06 指令跳转:原来if...else就是goto.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/07 函数调用:为什么会发生stack overflow?.md.html">07 函数调用:为什么会发生stack overflow?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html">08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/09 程序装载:“640K内存”真的不够用么?.md.html">09 程序装载:“640K内存”真的不够用么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/10 动态链接:程序内部的“共享单车”.md.html">10 动态链接:程序内部的“共享单车”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html">11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html">12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/13 加法器:如何像搭乐高一样搭电路(上)?.md.html">13 加法器:如何像搭乐高一样搭电路(上)?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/14 乘法器:如何像搭乐高一样搭电路(下)?.md.html">14 乘法器:如何像搭乐高一样搭电路(下)?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html">15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html">16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/17 建立数据通路(上):指令加运算=CPU.md.html">17 建立数据通路(上):指令加运算=CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/18 建立数据通路(中):指令加运算=CPU.md.html">18 建立数据通路(中):指令加运算=CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/19 建立数据通路(下):指令加运算=CPU.md.html">19 建立数据通路(下):指令加运算=CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/20 面向流水线的指令设计(上):一心多用的现代CPU.md.html">20 面向流水线的指令设计(上):一心多用的现代CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html">21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/22 冒险和预测(一):hazard是“危”也是“机”.md.html">22 冒险和预测(一):hazard是“危”也是“机”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/23 冒险和预测(二):流水线里的接力赛.md.html">23 冒险和预测(二):流水线里的接力赛.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/24 冒险和预测(三):CPU里的“线程池”.md.html">24 冒险和预测(三):CPU里的“线程池”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html">26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">27 SIMD:如何加速矩阵乘法?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/28 异常和中断:程序出错了怎么办?.md.html">28 异常和中断:程序出错了怎么办?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">29 CISC和RISC:为什么手机芯片都是ARM?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/30 GPU(上):为什么玩游戏需要使用GPU?.md.html">30 GPU(上):为什么玩游戏需要使用GPU?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/31 GPU(下):为什么深度学习需要使用GPU?.md.html">31 GPU(下):为什么深度学习需要使用GPU?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html">32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/33 解读TPU:设计和拆解一块ASIC芯片.md.html">33 解读TPU:设计和拆解一块ASIC芯片.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html">34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html">35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html">36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html">37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/38 高速缓存(下):你确定你的数据更新了么?.md.html">38 高速缓存(下):你确定你的数据更新了么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html">39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/40 理解内存(上):虚拟内存和内存保护是什么?.md.html">40 理解内存(上):虚拟内存和内存保护是什么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/41 理解内存(下):解析TLB和内存保护.md.html">41 理解内存(下):解析TLB和内存保护.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/42 总线:计算机内部的高速公路.md.html">42 总线:计算机内部的高速公路.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html">43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html">44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/45 机械硬盘:Google早期用过的“黑科技”.md.html">45 机械硬盘:Google早期用过的“黑科技”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">46 SSD硬盘(上):如何完成性能优化的KPI?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/47 SSD硬盘(下):如何完成性能优化的KPI?.md.html">47 SSD硬盘(下):如何完成性能优化的KPI?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">48 DMA:为什么Kafka这么快?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/49 数据完整性(上):硬件坏了怎么办?.md.html">49 数据完整性(上):硬件坏了怎么办?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/50 数据完整性(下):如何还原犯罪现场?.md.html">50 数据完整性(下):如何还原犯罪现场?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/51 分布式计算:如果所有人的大脑都联网会怎样?.md.html">51 分布式计算:如果所有人的大脑都联网会怎样?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html">53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html">55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">结束语 知也无涯,愿你也享受发现的乐趣.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
|
||
<div class="sidebar-toggle-inner"></div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script>
|
||
|
||
function add_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.add('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function remove_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function sidebar_toggle() {
|
||
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let content = document.querySelector('.off-canvas-content')
|
||
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
|
||
sidebar_toggle.classList.remove('extend')
|
||
|
||
sidebar.classList.remove('hide')
|
||
|
||
content.classList.remove('extend')
|
||
|
||
} else { // hide
|
||
|
||
sidebar_toggle.classList.add('extend')
|
||
|
||
sidebar.classList.add('hide')
|
||
|
||
content.classList.add('extend')
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
function open_sidebar() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.add('show')
|
||
|
||
overlay.classList.add('show')
|
||
|
||
}
|
||
|
||
function hide_canvas() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.remove('show')
|
||
|
||
overlay.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
<div class="off-canvas-content">
|
||
|
||
<div class="columns">
|
||
|
||
<div class="column col-12 col-lg-12">
|
||
|
||
<div class="book-navbar">
|
||
|
||
<!-- For Responsive Layout -->
|
||
|
||
<header class="navbar">
|
||
|
||
<section class="navbar-section">
|
||
|
||
<a onclick="open_sidebar()">
|
||
|
||
<i class="icon icon-menu"></i>
|
||
|
||
</a>
|
||
|
||
</section>
|
||
|
||
</header>
|
||
|
||
</div>
|
||
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
|
||
overflow-x: auto;
|
||
|
||
overflow-y: hidden;">
|
||
|
||
<div class="book-post">
|
||
|
||
<p id="tip" align="center"></p>
|
||
|
||
<div><h1>03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?</h1>
|
||
|
||
<p>“性能”这个词,不管是在日常生活还是写程序的时候,都经常被提到。比方说,买新电脑的时候,我们会说“原来的电脑性能跟不上了”;写程序的时候,我们会说,“这个程序性能需要优化一下”。那么,你有没有想过,我们常常挂在嘴边的“性能”到底指的是什么呢?我们能不能给性能下一个明确的定义,然后来进行准确的比较呢?</p>
|
||
|
||
<p>在计算机组成原理乃至体系结构中,“性能”都是最重要的一个主题。我在前面说过,学习和研究计算机组成原理,就是在理解计算机是怎么运作的,以及为什么要这么运作。“为什么”所要解决的事情,很多时候就是提升“性能”。</p>
|
||
|
||
<h2>什么是性能?时间的倒数</h2>
|
||
|
||
<p>计算机的性能,其实和我们干体力劳动很像,好比是我们要搬东西。对于计算机的性能,我们需要有个标准来衡量。这个标准中主要有两个指标。</p>
|
||
|
||
<p>第一个是<strong>响应时间</strong>(Response time)或者叫执行时间(Execution time)。想要提升响应时间这个性能指标,你可以理解为让计算机“跑得更快”。</p>
|
||
|
||
<p><img src="assets/4c87a1851aeb6857a323064859da6396.png" alt="img" /></p>
|
||
|
||
<p>图中是我们实际系统里性能监测工具 NewRelic 中的响应时间,代表了每个外部的 Web 请求的执行时间</p>
|
||
|
||
<p>第二个是<strong>吞吐率</strong>(Throughput)或者带宽(Bandwidth),想要提升这个指标,你可以理解为让计算机“搬得更多”。</p>
|
||
|
||
<p><img src="assets/27cab77c0eec95ec29792e6c3d093d27.png" alt="img" /></p>
|
||
|
||
<p>服务器使用的网络带宽,通常就是一个吞吐率性能指标</p>
|
||
|
||
<p>所以说,响应时间指的就是,我们执行一个程序,到底需要花多少时间。花的时间越少,自然性能就越好。</p>
|
||
|
||
<p>而吞吐率是指我们在一定的时间范围内,到底能处理多少事情。这里的“事情”,在计算机里就是处理的数据或者执行的程序指令。</p>
|
||
|
||
<p>和搬东西来做对比,如果我们的响应时间短,跑得快,我们可以来回多跑几趟多搬几趟。所以说,缩短程序的响应时间,一般来说都会提升吞吐率。</p>
|
||
|
||
<p>除了缩短响应时间,我们还有别的方法吗?当然有,比如说,我们还可以多找几个人一起来搬,这就类似现代的服务器都是 8 核、16 核的。人多力量大,同时处理数据,在单位时间内就可以处理更多数据,吞吐率自然也就上去了。</p>
|
||
|
||
<p>提升吞吐率的办法有很多。大部分时候,我们只要多加一些机器,多堆一些硬件就好了。但是响应时间的提升却没有那么容易,因为 CPU 的性能提升其实在 10 年前就处于“挤牙膏”的状态了,所以我们得慎重地来分析对待。下面我们具体来看。</p>
|
||
|
||
<p>我们一般把性能,定义成响应时间的倒数,也就是:</p>
|
||
|
||
<p>性能 = 1/ 响应时间</p>
|
||
|
||
<p>这样一来,响应时间越短,性能的数值就越大。同样一个程序,在 Intel 最新的 CPU Coffee Lake 上,只需要 30s 就能运行完成,而在 5 年前 CPU Sandy Bridge 上,需要 1min 才能完成。那么我们自然可以算出来,Coffee Lake 的性能是 1/30,Sandy Bridge 的性能是 1/60,两个的性能比为 2。于是,我们就可以说,Coffee Lake 的性能是 Sandy Bridge 的 2 倍。</p>
|
||
|
||
<p>过去几年流行的手机跑分软件,就是把多个预设好的程序在手机上运行,然后根据运行需要的时间,算出一个分数来给出手机的性能评估。而在业界,各大 CPU 和服务器厂商组织了一个叫作<strong>SPEC</strong>(Standard Performance Evaluation Corporation)的第三方机构,专门用来指定各种“跑分”的规则。</p>
|
||
|
||
<p><img src="assets/a50a6cb9d3df027aeda5ee8e53b75422.png" alt="img" /></p>
|
||
|
||
<p>一份 SPEC 报告通常包含了大量不同测试的评分</p>
|
||
|
||
<p>SPEC 提供的 CPU 基准测试程序,就好像 CPU 届的“高考”,通过数十个不同的计算程序,对于 CPU 的性能给出一个最终评分。这些程序丰富多彩,有编译器、解释器、视频压缩、人工智能国际象棋等等,涵盖了方方面面的应用场景。感兴趣的话,你可以点击<a href="https://www.spec.org/cpu2017/results/cpu2017.html">这个链接</a>看看。</p>
|
||
|
||
<h2>计算机的计时单位:CPU 时钟</h2>
|
||
|
||
<p>虽然时间是一个很自然的用来衡量性能的指标,但是用时间来衡量时,有两个问题。</p>
|
||
|
||
<p><strong>第一个就是时间不“准”</strong>。如果用你自己随便写的一个程序,来统计程序运行的时间,每一次统计结果不会完全一样。有可能这一次花了 45ms,下一次变成了 53ms。</p>
|
||
|
||
<p>为什么会不准呢?这里面有好几个原因。首先,我们统计时间是用类似于“掐秒表”一样,记录程序运行结束的时间减去程序开始运行的时间。这个时间也叫 Wall Clock Time 或者 Elapsed Time,就是在运行程序期间,挂在墙上的钟走掉的时间。</p>
|
||
|
||
<p>但是,计算机可能同时运行着好多个程序,CPU 实际上不停地在各个程序之间进行切换。在这些走掉的时间里面,很可能 CPU 切换去运行别的程序了。而且,有些程序在运行的时候,可能要从网络、硬盘去读取数据,要等网络和硬盘把数据读出来,给到内存和 CPU。所以说,<strong>要想准确统计某个程序运行时间,进而去比较两个程序的实际性能,我们得把这些时间给刨除掉</strong>。</p>
|
||
|
||
<p>那这件事怎么实现呢?Linux 下有一个叫 time 的命令,可以帮我们统计出来,同样的 Wall Clock Time 下,程序实际在 CPU 上到底花了多少时间。</p>
|
||
|
||
<p>我们简单运行一下 time 命令。它会返回三个值,第一个是<strong>real time</strong>,也就是我们说的 Wall Clock Time,也就是运行程序整个过程中流逝掉的时间;第二个是<strong>user time</strong>,也就是 CPU 在运行你的程序,在用户态运行指令的时间;第三个是<strong>sys time</strong>,是 CPU 在运行你的程序,在操作系统内核里运行指令的时间。而<strong>程序实际花费的 CPU 执行时间(CPU Time),就是 user time 加上 sys time</strong>。</p>
|
||
|
||
<pre><code>$ time seq 1000000 | wc -l
|
||
|
||
1000000
|
||
|
||
|
||
|
||
|
||
|
||
real 0m0.101s
|
||
|
||
user 0m0.031s
|
||
|
||
sys 0m0.016s
|
||
|
||
</code></pre>
|
||
|
||
<p>在我给的这个例子里,你可以看到,实际上程序用了 0.101s,但是 CPU time 只有 0.031+0.016 = 0.047s。运行程序的时间里,只有不到一半是实际花在这个程序上的。</p>
|
||
|
||
<p><img src="assets/0b340db019d7e389a2bde4c237ee4700.jpg" alt="img" /></p>
|
||
|
||
<p>程序实际占用的 CPU 时间一般比 Elapsed Time 要少不少</p>
|
||
|
||
<p><strong>其次,即使我们已经拿到了 CPU 时间,我们也不一定可以直接“比较”出两个程序的性能差异</strong>。即使在同一台计算机上,CPU 可能满载运行也可能降频运行,降频运行的时候自然花的时间会多一些。</p>
|
||
|
||
<p>除了 CPU 之外,时间这个性能指标还会受到主板、内存这些其他相关硬件的影响。所以,我们需要对“时间”这个我们可以感知的指标进行拆解,把程序的 CPU 执行时间变成 CPU 时钟周期数(CPU Cycles)和 时钟周期时间(Clock Cycle)的乘积。</p>
|
||
|
||
<p>程序的 CPU 执行时间 =CPU 时钟周期数×时钟周期时间</p>
|
||
|
||
<p>我们先来理解一下什么是时钟周期时间。你在买电脑的时候,一定关注过 CPU 的主频。比如我手头的这台电脑就是 Intel Core-i7-7700HQ 2.8GHz,这里的 2.8GHz 就是电脑的主频(Frequency/Clock Rate)。这个 2.8GHz,我们可以先粗浅地认为,CPU 在 1 秒时间内,可以执行的简单指令的数量是 2.8G 条。</p>
|
||
|
||
<p>如果想要更准确一点描述,这个 2.8GHz 就代表,我们 CPU 的一个“钟表”能够识别出来的最小的时间间隔。就像我们挂在墙上的挂钟,都是“滴答滴答”一秒一秒地走,所以通过墙上的挂钟能够识别出来的最小时间单位就是秒。</p>
|
||
|
||
<p>而在 CPU 内部,和我们平时戴的电子石英表类似,有一个叫晶体振荡器(Oscillator Crystal)的东西,简称为晶振。我们把晶振当成 CPU 内部的电子表来使用。晶振带来的每一次“滴答”,就是时钟周期时间。</p>
|
||
|
||
<p>在我这个 2.8GHz 的 CPU 上,这个时钟周期时间,就是 1/2.8G。我们的 CPU,是按照这个“时钟”提示的时间来进行自己的操作。主频越高,意味着这个表走得越快,我们的 CPU 也就“被逼”着走得越快。</p>
|
||
|
||
<p>如果你自己组装过台式机的话,可能听说过“超频”这个概念,这说的其实就相当于把买回来的 CPU 内部的钟给调快了,于是 CPU 的计算跟着这个时钟的节奏,也就自然变快了。当然这个快不是没有代价的,CPU 跑得越快,散热的压力也就越大。就和人一样,超过生理极限,CPU 就会崩溃了。</p>
|
||
|
||
<p>我们现在回到上面程序 CPU 执行时间的公式。</p>
|
||
|
||
<p>程序的 CPU 执行时间 =CPU 时钟周期数×时钟周期时间</p>
|
||
|
||
<p>最简单的提升性能方案,自然缩短时钟周期时间,也就是提升主频。换句话说,就是换一块好一点的 CPU。不过,这个是我们这些软件工程师控制不了的事情,所以我们就把目光挪到了乘法的另一个因子——CPU 时钟周期数上。如果能够减少程序需要的 CPU 时钟周期数量,一样能够提升程序性能。</p>
|
||
|
||
<p>对于 CPU 时钟周期数,我们可以再做一个分解,把它变成“指令数×<strong>每条指令的平均时钟周期数</strong>(Cycles Per Instruction,简称 CPI)”。不同的指令需要的 Cycles 是不同的,加法和乘法都对应着一条 CPU 指令,但是乘法需要的 Cycles 就比加法要多,自然也就慢。在这样拆分了之后,我们的程序的 CPU 执行时间就可以变成这样三个部分的乘积。</p>
|
||
|
||
<p>程序的 CPU 执行时间 = 指令数×CPI×Clock Cycle Time</p>
|
||
|
||
<p>因此,如果我们想要解决性能问题,其实就是要优化这三者。</p>
|
||
|
||
<ol>
|
||
|
||
<li>时钟周期时间,就是计算机主频,这个取决于计算机硬件。我们所熟知的<a href="https://zh.wikipedia.org/wiki/摩尔定律">摩尔定律</a>就一直在不停地提高我们计算机的主频。比如说,我最早使用的 80386 主频只有 33MHz,现在手头的笔记本电脑就有 2.8GHz,在主频层面,就提升了将近 100 倍。</li>
|
||
|
||
<li>每条指令的平均时钟周期数 CPI,就是一条指令到底需要多少 CPU Cycle。在后面讲解 CPU 结构的时候,我们会看到,现代的 CPU 通过流水线技术(Pipeline),让一条指令需要的 CPU Cycle 尽可能地少。因此,对于 CPI 的优化,也是计算机组成和体系结构中的重要一环。</li>
|
||
|
||
<li>指令数,代表执行我们的程序到底需要多少条指令、用哪些指令。这个很多时候就把挑战交给了编译器。同样的代码,编译成计算机指令时候,就有各种不同的表示方式。</li>
|
||
|
||
</ol>
|
||
|
||
<p>我们可以把自己想象成一个 CPU,坐在那里写程序。计算机主频就好像是你的打字速度,打字越快,你自然可以多写一点程序。CPI 相当于你在写程序的时候,熟悉各种快捷键,越是打同样的内容,需要敲击键盘的次数就越少。指令数相当于你的程序设计得够合理,同样的程序要写的代码行数就少。如果三者皆能实现,你自然可以很快地写出一个优秀的程序,你的“性能”从外面来看就是好的。</p>
|
||
|
||
<h2>总结延伸</h2>
|
||
|
||
<p>好了,学完这一讲,对“性能”这个名词,你应该有了更清晰的认识。我主要对于“响应时间”这个性能指标进行抽丝剥茧,拆解成了计算机时钟周期、CPI 以及指令数这三个独立的指标的乘积,并且为你指明了优化计算机性能的三条康庄大道。也就是,提升计算机主频,优化 CPU 设计使得在单个时钟周期内能够执行更多指令,以及通过编译器来减少需要的指令数。</p>
|
||
|
||
<p>在后面的几讲里面,我会为你讲解,具体怎么在电路硬件、CPU 设计,乃至指令设计层面,提升计算机的性能。</p>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div>
|
||
|
||
<div style="float: left">
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">上一页</a>
|
||
|
||
</div>
|
||
|
||
<div style="float: right">
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">下一页</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
|
||
</div>
|
||
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997a896d243cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
|
||
</body>
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
|
||
<script>
|
||
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
|
||
|
||
function gtag() {
|
||
|
||
dataLayer.push(arguments);
|
||
|
||
}
|
||
|
||
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-NPSEEVD756');
|
||
|
||
var path = window.location.pathname
|
||
|
||
var cookie = getCookie("lastPath");
|
||
|
||
console.log(path)
|
||
|
||
if (path.replace("/", "") === "") {
|
||
|
||
if (cookie.replace("/", "") !== "") {
|
||
|
||
console.log(cookie)
|
||
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
setCookie("lastPath", path)
|
||
|
||
}
|
||
|
||
|
||
|
||
function setCookie(cname, cvalue) {
|
||
|
||
var d = new Date();
|
||
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
|
||
var expires = "expires=" + d.toGMTString();
|
||
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
|
||
}
|
||
|
||
|
||
|
||
function getCookie(cname) {
|
||
|
||
var name = cname + "=";
|
||
|
||
var ca = document.cookie.split(';');
|
||
|
||
for (var i = 0; i < ca.length; i++) {
|
||
|
||
var c = ca[i].trim();
|
||
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
|
||
}
|
||
|
||
return "";
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
</html>
|
||
|