mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-27 05:36:42 +08:00
564 lines
35 KiB
HTML
564 lines
35 KiB
HTML
<!DOCTYPE html>
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
<link rel="icon" href="/static/favicon.png">
|
||
<title>26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html</title>
|
||
<!-- Spectre.css framework -->
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
<!-- theme css & js -->
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
</head>
|
||
|
||
<body>
|
||
|
||
<div class="book-container">
|
||
<div class="book-sidebar">
|
||
<div class="book-brand">
|
||
<a href="/">
|
||
<img src="/static/favicon.png">
|
||
<span>技术文章摘抄</span>
|
||
</a>
|
||
</div>
|
||
<div class="book-menu uncollapsible">
|
||
<ul class="uncollapsible">
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
</ul>
|
||
|
||
<ul class="uncollapsible">
|
||
<li><a href="../">上一级</a></li>
|
||
</ul>
|
||
|
||
<ul class="uncollapsible">
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/00 开篇词 为什么你需要学习计算机组成原理?.md.html">00 开篇词 为什么你需要学习计算机组成原理?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/01 冯·诺依曼体系结构:计算机组成的金字塔.md.html">01 冯·诺依曼体系结构:计算机组成的金字塔.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">02 给你一张知识地图,计算机组成原理应该这么学.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html">03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/05 计算机指令:让我们试试用纸带编程.md.html">05 计算机指令:让我们试试用纸带编程.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/06 指令跳转:原来if...else就是goto.md.html">06 指令跳转:原来if...else就是goto.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/07 函数调用:为什么会发生stack overflow?.md.html">07 函数调用:为什么会发生stack overflow?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html">08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/09 程序装载:“640K内存”真的不够用么?.md.html">09 程序装载:“640K内存”真的不够用么?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/10 动态链接:程序内部的“共享单车”.md.html">10 动态链接:程序内部的“共享单车”.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html">11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html">12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/13 加法器:如何像搭乐高一样搭电路(上)?.md.html">13 加法器:如何像搭乐高一样搭电路(上)?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/14 乘法器:如何像搭乐高一样搭电路(下)?.md.html">14 乘法器:如何像搭乐高一样搭电路(下)?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html">15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html">16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/17 建立数据通路(上):指令加运算=CPU.md.html">17 建立数据通路(上):指令加运算=CPU.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/18 建立数据通路(中):指令加运算=CPU.md.html">18 建立数据通路(中):指令加运算=CPU.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/19 建立数据通路(下):指令加运算=CPU.md.html">19 建立数据通路(下):指令加运算=CPU.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/20 面向流水线的指令设计(上):一心多用的现代CPU.md.html">20 面向流水线的指令设计(上):一心多用的现代CPU.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html">21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/22 冒险和预测(一):hazard是“危”也是“机”.md.html">22 冒险和预测(一):hazard是“危”也是“机”.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/23 冒险和预测(二):流水线里的接力赛.md.html">23 冒险和预测(二):流水线里的接力赛.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/24 冒险和预测(三):CPU里的“线程池”.md.html">24 冒险和预测(三):CPU里的“线程池”.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
<a class="current-tab" href="/专栏/深入浅出计算机组成原理/26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html">26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html</a>
|
||
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">27 SIMD:如何加速矩阵乘法?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/28 异常和中断:程序出错了怎么办?.md.html">28 异常和中断:程序出错了怎么办?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">29 CISC和RISC:为什么手机芯片都是ARM?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/30 GPU(上):为什么玩游戏需要使用GPU?.md.html">30 GPU(上):为什么玩游戏需要使用GPU?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/31 GPU(下):为什么深度学习需要使用GPU?.md.html">31 GPU(下):为什么深度学习需要使用GPU?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html">32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/33 解读TPU:设计和拆解一块ASIC芯片.md.html">33 解读TPU:设计和拆解一块ASIC芯片.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html">34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html">35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html">36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html">37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/38 高速缓存(下):你确定你的数据更新了么?.md.html">38 高速缓存(下):你确定你的数据更新了么?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html">39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/40 理解内存(上):虚拟内存和内存保护是什么?.md.html">40 理解内存(上):虚拟内存和内存保护是什么?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/41 理解内存(下):解析TLB和内存保护.md.html">41 理解内存(下):解析TLB和内存保护.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/42 总线:计算机内部的高速公路.md.html">42 总线:计算机内部的高速公路.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html">43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html">44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/45 机械硬盘:Google早期用过的“黑科技”.md.html">45 机械硬盘:Google早期用过的“黑科技”.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">46 SSD硬盘(上):如何完成性能优化的KPI?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/47 SSD硬盘(下):如何完成性能优化的KPI?.md.html">47 SSD硬盘(下):如何完成性能优化的KPI?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">48 DMA:为什么Kafka这么快?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/49 数据完整性(上):硬件坏了怎么办?.md.html">49 数据完整性(上):硬件坏了怎么办?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/50 数据完整性(下):如何还原犯罪现场?.md.html">50 数据完整性(下):如何还原犯罪现场?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/51 分布式计算:如果所有人的大脑都联网会怎样?.md.html">51 分布式计算:如果所有人的大脑都联网会怎样?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html">53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html">55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html</a>
|
||
|
||
</li>
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">结束语 知也无涯,愿你也享受发现的乐趣.md.html</a>
|
||
|
||
</li>
|
||
</ul>
|
||
|
||
</div>
|
||
</div>
|
||
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
<div class="sidebar-toggle-inner"></div>
|
||
</div>
|
||
|
||
<script>
|
||
function add_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.add('show')
|
||
}
|
||
|
||
function remove_inner() {
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
inner.classList.remove('show')
|
||
}
|
||
|
||
function sidebar_toggle() {
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let content = document.querySelector('.off-canvas-content')
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
sidebar_toggle.classList.remove('extend')
|
||
sidebar.classList.remove('hide')
|
||
content.classList.remove('extend')
|
||
} else { // hide
|
||
sidebar_toggle.classList.add('extend')
|
||
sidebar.classList.add('hide')
|
||
content.classList.add('extend')
|
||
}
|
||
}
|
||
|
||
|
||
function open_sidebar() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.add('show')
|
||
overlay.classList.add('show')
|
||
}
|
||
function hide_canvas() {
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
sidebar.classList.remove('show')
|
||
overlay.classList.remove('show')
|
||
}
|
||
|
||
</script>
|
||
|
||
<div class="off-canvas-content">
|
||
<div class="columns">
|
||
<div class="column col-12 col-lg-12">
|
||
<div class="book-navbar">
|
||
<!-- For Responsive Layout -->
|
||
<header class="navbar">
|
||
<section class="navbar-section">
|
||
<a onclick="open_sidebar()">
|
||
<i class="icon icon-menu"></i>
|
||
</a>
|
||
</section>
|
||
</header>
|
||
</div>
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
overflow-x: auto;
|
||
overflow-y: hidden;">
|
||
<div class="book-post">
|
||
<p id="tip" align="center"></p>
|
||
<div><h1>26 Superscalar和VLIW:如何让CPU的吞吐率超过1?</h1>
|
||
<p>到今天为止,专栏已经过半了。过去的 20 多讲里,我给你讲的内容,很多都是围绕着怎么提升 CPU 的性能这个问题展开的。</p>
|
||
<p>我们先回顾一下<a href="https://time.geekbang.org/column/article/93246">第 4 讲</a>,不知道你是否还记得这个公式:</p>
|
||
<p>程序的 CPU 执行时间 = 指令数 × CPI × Clock Cycle Time</p>
|
||
<p>这个公式里,有一个叫 CPI 的指标。我们知道,CPI 的倒数,又叫作 IPC(Instruction Per Clock),也就是一个时钟周期里面能够执行的指令数,代表了 CPU 的吞吐率。那么,这个指标,放在我们前面几节反复优化流水线架构的 CPU 里,能达到多少呢?</p>
|
||
<p>答案是,最佳情况下,IPC 也只能到 1。因为无论做了哪些流水线层面的优化,即使做到了指令执行层面的乱序执行,CPU 仍然只能在一个时钟周期里面,取一条指令。</p>
|
||
<p><img src="assets/dd88d0dbf3a88b09d5e8fb6d9e3aea13.jpeg" alt="img" /></p>
|
||
<p>这说明,无论指令后续能优化得多好,一个时钟周期也只能执行完这样一条指令,CPI 只能是 1。但是,我们现在用的 Intel CPU 或者 ARM 的 CPU,一般的 CPI 都能做到 2 以上,这是怎么做到的呢?</p>
|
||
<p>今天,我们就一起来看看,现代 CPU 都使用了什么“黑科技”。</p>
|
||
<h2>多发射与超标量:同一实践执行的两条指令</h2>
|
||
<p>之前讲 CPU 的硬件组成的时候,我们把所有算术和逻辑运算都抽象出来,变成了一个 ALU 这样的“黑盒子”。你应该还记得第 13 讲到第 16 讲,关于加法器、乘法器、乃至浮点数计算的部分,其实整数的计算和浮点数的计算过程差异还是不小的。实际上,整数和浮点数计算的电路,在 CPU 层面也是分开的。</p>
|
||
<p>一直到 80386,我们的 CPU 都是没有专门的浮点数计算的电路的。当时的浮点数计算,都是用软件进行模拟的。所以,在 80386 时代,Intel 给 386 配了单独的 387 芯片,专门用来做浮点数运算。那个时候,你买 386 芯片的话,会有 386sx 和 386dx 这两种芯片可以选择。386dx 就是带了 387 浮点数计算芯片的,而 sx 就是不带浮点数计算芯片的。</p>
|
||
<p>其实,我们现在用的 Intel CPU 芯片也是一样的。虽然浮点数计算已经变成 CPU 里的一部分,但并不是所有计算功能都在一个 ALU 里面,真实的情况是,我们会有多个 ALU。这也是为什么,在<a href="https://time.geekbang.org/column/article/101436">第 24 讲</a>讲乱序执行的时候,你会看到,其实指令的执行阶段,是由很多个功能单元(FU)并行(Parallel)进行的。</p>
|
||
<p>不过,在指令乱序执行的过程中,我们的取指令(IF)和指令译码(ID)部分并不是并行进行的。</p>
|
||
<p>既然指令的执行层面可以并行进行,为什么取指令和指令译码不行呢?如果想要实现并行,该怎么办呢?</p>
|
||
<p>其实只要我们把取指令和指令译码,也一样通过增加硬件的方式,并行进行就好了。我们可以一次性从内存里面取出多条指令,然后分发给多个并行的指令译码器,进行译码,然后对应交给不同的功能单元去处理。这样,我们在一个时钟周期里,能够完成的指令就不只一条了。IPC 也就能做到大于 1 了。</p>
|
||
<p><img src="assets/85f15ec667d09fd2d368822904029b32.jpeg" alt="img" /></p>
|
||
<p>这种 CPU 设计,我们叫作<strong>多发射</strong>(Mulitple Issue)和<strong>超标量</strong>(Superscalar)。</p>
|
||
<p>什么叫多发射呢?这个词听起来很抽象,其实它意思就是说,我们同一个时间,可能会同时把多条指令发射(Issue)到不同的译码器或者后续处理的流水线中去。</p>
|
||
<p>在超标量的 CPU 里面,有很多条并行的流水线,而不是只有一条流水线。“超标量“这个词是说,本来我们在一个时钟周期里面,只能执行一个标量(Scalar)的运算。在多发射的情况下,我们就能够超越这个限制,同时进行多次计算。</p>
|
||
<p><img src="assets/2e96fe0985a4ae3bd7a58c345def29d3.jpeg" alt="img" /></p>
|
||
<p>你可以看我画的这个超标量设计的流水线示意图。仔细看,你应该能看到一个有意思的现象,每一个功能单元的流水线的长度是不同的。事实上,不同的功能单元的流水线长度本来就不一样。我们平时所说的 14 级流水线,指的通常是进行整数计算指令的流水线长度。如果是浮点数运算,实际的流水线长度则会更长一些。</p>
|
||
<h2>Intel 的失败之作:安腾的超长指令字设计</h2>
|
||
<p>无论是之前几讲里讲的乱序执行,还是现在更进一步的超标量技术,在实际的硬件层面,其实实施起来都挺麻烦的。这是因为,在乱序执行和超标量的体系里面,我们的 CPU 要解决依赖冲突的问题。这也就是前面几讲我们讲的冒险问题。</p>
|
||
<p>CPU 需要在指令执行之前,去判断指令之间是否有依赖关系。如果有对应的依赖关系,指令就不能分发到执行阶段。因为这样,上面我们所说的超标量 CPU 的多发射功能,又被称为<strong>动态多发射处理器</strong>。这些对于依赖关系的检测,都会使得我们的 CPU 电路变得更加复杂。</p>
|
||
<p>于是,计算机科学家和工程师们就又有了一个大胆的想法。我们能不能不把分析和解决依赖关系的事情,放在硬件里面,而是放到软件里面来干呢?</p>
|
||
<p>如果你还记得的话,我在第 4 讲也讲过,要想优化 CPU 的执行时间,关键就是拆解这个公式:</p>
|
||
<p>程序的 CPU 执行时间 = 指令数 × CPI × Clock Cycle Time</p>
|
||
<p>当时我们说过,这个公式里面,我们可以通过改进编译器来优化指令数这个指标。那接下来,我们就来看看一个非常大胆的 CPU 设计想法,叫作<strong>超长指令字设计</strong>(Very Long Instruction Word,VLIW)。这个设计呢,不仅想让编译器来优化指令数,还想直接通过编译器,来优化 CPI。</p>
|
||
<p>围绕着这个设计的,是 Intel 一个著名的“史诗级”失败,也就是著名的 IA-64 架构的安腾(Itanium)处理器。只不过,这一次,责任不全在 Intel,还要拉上可以称之为硅谷起源的另一家公司,也就是惠普。</p>
|
||
<p>之所以称为“史诗”级失败,这个说法来源于惠普最早给这个架构取的名字,<strong>显式并发指令运算</strong>(Explicitly Parallel Instruction Computer),这个名字的缩写<strong>EPIC</strong>,正好是“史诗”的意思。</p>
|
||
<p>好巧不巧,安腾处理器和和我之前给你介绍过的 Pentium 4 一样,在市场上是一个失败的产品。在经历了 12 年之久的设计研发之后,安腾一代只卖出了几千套。而安腾二代,在从 2002 年开始反复挣扎了 16 年之后,最终在 2018 年被 Intel 宣告放弃,退出了市场。自此,世上再也没有这个“史诗”服务器了。</p>
|
||
<p>那么,我们就来看看,这个超长指令字的安腾处理器是怎么回事儿。</p>
|
||
<p>在乱序执行和超标量的 CPU 架构里,指令的前后依赖关系,是由 CPU 内部的硬件电路来检测的。而到了<strong>超长指令字</strong>的架构里面,这个工作交给了编译器这个软件。</p>
|
||
<p><img src="assets/22b3f723ceee5950ac20a7b874dabbde.jpeg" alt="img" /></p>
|
||
<p>我从专栏第 5 讲开始,就给你看了不少 C 代码到汇编代码和机器代码的对照。编译器在这个过程中,其实也能够知道前后数据的依赖。于是,我们可以让编译器把没有依赖关系的代码位置进行交换。然后,再把多条连续的指令打包成一个指令包。安腾的 CPU 就是把 3 条指令变成一个指令包。</p>
|
||
<p><img src="assets/f16a1ae443418caca0dc2fc3cec200f6.jpeg" alt="img" /></p>
|
||
<p>CPU 在运行的时候,不再是取一条指令,而是取出一个指令包。然后,译码解析整个指令包,解析出 3 条指令直接并行运行。可以看到,使用<strong>超长指令字</strong>架构的 CPU,同样是采用流水线架构的。也就是说,一组(Group)指令,仍然要经历多个时钟周期。同样的,下一组指令并不是等上一组指令执行完成之后再执行,而是在上一组指令的指令译码阶段,就开始取指令了。</p>
|
||
<p>值得注意的一点是,流水线停顿这件事情在<strong>超长指令字</strong>里面,很多时候也是由编译器来做的。除了停下整个处理器流水线,<strong>超长指令字</strong>的 CPU 不能在某个时钟周期停顿一下,等待前面依赖的操作执行完成。编译器需要在适当的位置插入 NOP 操作,直接在编译出来的机器码里面,就把流水线停顿这个事情在软件层面就安排妥当。</p>
|
||
<p>虽然安腾的设想很美好,Intel 也曾经希望能够让安腾架构成为替代 x86 的新一代架构,但是最终安腾还是在前前后后折腾将近 30 年后失败了。2018 年,Intel 宣告安腾 9500 会在 2021 年停止供货。</p>
|
||
<p>安腾失败的原因有很多,其中有一个重要的原因就是“向前兼容”。</p>
|
||
<p>一方面,安腾处理器的指令集和 x86 是不同的。这就意味着,原来 x86 上的所有程序是没有办法在安腾上运行的,而需要通过编译器重新编译才行。</p>
|
||
<p>另一方面,安腾处理器的 VLIW 架构决定了,如果安腾需要提升并行度,就需要增加一个指令包里包含的指令数量,比方说从 3 个变成 6 个。一旦这么做了,虽然同样是 VLIW 架构,同样指令集的安腾 CPU,程序也需要重新编译。因为原来编译器判断的依赖关系是在 3 个指令以及由 3 个指令组成的指令包之间,现在要变成 6 个指令和 6 个指令组成的指令包。编译器需要重新编译,交换指令顺序以及 NOP 操作,才能满足条件。甚至,我们需要重新来写编译器,才能让程序在新的 CPU 上跑起来。</p>
|
||
<p>于是,安腾就变成了一个既不容易向前兼容,又不容易向后兼容的 CPU。那么,它的失败也就不足为奇了。</p>
|
||
<p>可以看到,技术思路上的先进想法,在实际的业界应用上会遇到更多具体的实践考验。无论是指令集向前兼容性,还是对应 CPU 未来的扩展,在设计的时候,都需要更多地去考虑实践因素。</p>
|
||
<h2>总结延伸</h2>
|
||
<p>这一讲里,我和你一起向 CPU 的性能发起了一个新的挑战:让 CPU 的吞吐率,也就是 IPC 能够超过 1。</p>
|
||
<p>我先是为你介绍了超标量,也就是 Superscalar 这个方法。超标量可以让 CPU 不仅在指令执行阶段是并行的,在取指令和指令译码的时候,也是并行的。通过超标量技术,可以使得你所使用的 CPU 的 IPC 超过 1。</p>
|
||
<p>在 Intel 的 x86 的 CPU 里,从 Pentium 时代,第一次开始引入超标量技术,整个 CPU 的性能上了一个台阶。对应的技术,一直沿用到了现在。超标量技术和你之前看到的其他流水线技术一样,依赖于在硬件层面,能够检测到对应的指令的先后依赖关系,解决“冒险”问题。所以,它也使得 CPU 的电路变得更复杂了。</p>
|
||
<p>因为这些复杂性,惠普和 Intel 又共同推出了著名的安腾处理器。通过在编译器层面,直接分析出指令的前后依赖关系。于是,硬件在代码编译之后,就可以直接拿到调换好先后顺序的指令。并且这些指令中,可以并行执行的部分,会打包在一起组成一个指令包。安腾处理器在取指令和指令译码的时候,拿到的不再是单个指令,而是这样一个指令包。并且在指令执行阶段,可以并行执行指令包里所有的指令。</p>
|
||
<p>虽然看起来,VLIW 在技术层面更具有颠覆性,不仅仅只是一个硬件层面的改造,而且利用了软件层面的编译器,来组合解决提升 CPU 指令吞吐率的问题。然而,最终 VLIW 却没有得到市场和业界的认可。</p>
|
||
<p>惠普和 Intel 强强联合开发的安腾处理器命运多舛。从 1989 开始研发,直到 2001 年才发布了第一代安腾处理器。然而 12 年的开发过程后,第一代安腾处理器最终只卖出了几千套。而 2002 年发布的安腾 2 处理器,也没能拯救自己的命运。最终在 2018 年,Intel 宣布安腾退出市场。自此之后,市面上再没有能够大规模商用的 VLIW 架构的处理器了。</p>
|
||
<h2>推荐阅读</h2>
|
||
<p>关于超标量和多发射的相关知识,你可以多看一看《计算机组成与设计:硬件 / 软件接口》的 4.10 部分。其中,4.10.1 和 4.10.2 的推测和静态多发射,其实就是今天我们讲的超长指令字(VLIW)的知识点。4.10.2 的动态多发射,其实就是今天我们讲的超标量(Superscalar)的知识点。</p>
|
||
</div>
|
||
</div>
|
||
<div>
|
||
<div style="float: left">
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">上一页</a>
|
||
</div>
|
||
<div style="float: right">
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">下一页</a>
|
||
</div>
|
||
</div>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
</div>
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997abe88e93cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
</body>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
function gtag() {
|
||
dataLayer.push(arguments);
|
||
}
|
||
|
||
gtag('js', new Date());
|
||
gtag('config', 'G-NPSEEVD756');
|
||
var path = window.location.pathname
|
||
var cookie = getCookie("lastPath");
|
||
console.log(path)
|
||
if (path.replace("/", "") === "") {
|
||
if (cookie.replace("/", "") !== "") {
|
||
console.log(cookie)
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
}
|
||
} else {
|
||
setCookie("lastPath", path)
|
||
}
|
||
|
||
function setCookie(cname, cvalue) {
|
||
var d = new Date();
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
var expires = "expires=" + d.toGMTString();
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
}
|
||
|
||
function getCookie(cname) {
|
||
var name = cname + "=";
|
||
var ca = document.cookie.split(';');
|
||
for (var i = 0; i < ca.length; i++) {
|
||
var c = ca[i].trim();
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
}
|
||
return "";
|
||
}
|
||
|
||
</script>
|
||
|
||
</html>
|