mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-26 21:26:41 +08:00
1131 lines
35 KiB
HTML
1131 lines
35 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
||
<head>
|
||
|
||
<head>
|
||
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
|
||
<link rel="icon" href="/static/favicon.png">
|
||
|
||
<title>28 异常和中断:程序出错了怎么办?.md.html</title>
|
||
|
||
<!-- Spectre.css framework -->
|
||
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
|
||
<!-- theme css & js -->
|
||
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
|
||
</head>
|
||
|
||
|
||
|
||
<body>
|
||
|
||
|
||
|
||
<div class="book-container">
|
||
|
||
<div class="book-sidebar">
|
||
|
||
<div class="book-brand">
|
||
|
||
<a href="/">
|
||
|
||
<img src="/static/favicon.png">
|
||
|
||
<span>技术文章摘抄</span>
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div class="book-menu uncollapsible">
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="../">上一级</a></li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/00 开篇词 为什么你需要学习计算机组成原理?.md.html">00 开篇词 为什么你需要学习计算机组成原理?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/01 冯·诺依曼体系结构:计算机组成的金字塔.md.html">01 冯·诺依曼体系结构:计算机组成的金字塔.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/02 给你一张知识地图,计算机组成原理应该这么学.md.html">02 给你一张知识地图,计算机组成原理应该这么学.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html">03 通过你的CPU主频,我们来谈谈“性能”究竟是什么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html">04 穿越功耗墙,我们该从哪些方面提升“性能”?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/05 计算机指令:让我们试试用纸带编程.md.html">05 计算机指令:让我们试试用纸带编程.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/06 指令跳转:原来if...else就是goto.md.html">06 指令跳转:原来if...else就是goto.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/07 函数调用:为什么会发生stack overflow?.md.html">07 函数调用:为什么会发生stack overflow?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html">08 ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/09 程序装载:“640K内存”真的不够用么?.md.html">09 程序装载:“640K内存”真的不够用么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/10 动态链接:程序内部的“共享单车”.md.html">10 动态链接:程序内部的“共享单车”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html">11 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html">12 理解电路:从电报机到门电路,我们如何做到“千里传信”?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/13 加法器:如何像搭乐高一样搭电路(上)?.md.html">13 加法器:如何像搭乐高一样搭电路(上)?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/14 乘法器:如何像搭乐高一样搭电路(下)?.md.html">14 乘法器:如何像搭乐高一样搭电路(下)?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html">15 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html">16 浮点数和定点数(下):深入理解浮点数到底有什么用?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/17 建立数据通路(上):指令加运算=CPU.md.html">17 建立数据通路(上):指令加运算=CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/18 建立数据通路(中):指令加运算=CPU.md.html">18 建立数据通路(中):指令加运算=CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/19 建立数据通路(下):指令加运算=CPU.md.html">19 建立数据通路(下):指令加运算=CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/20 面向流水线的指令设计(上):一心多用的现代CPU.md.html">20 面向流水线的指令设计(上):一心多用的现代CPU.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html">21 面向流水线的指令设计(下):奔腾4是怎么失败的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/22 冒险和预测(一):hazard是“危”也是“机”.md.html">22 冒险和预测(一):hazard是“危”也是“机”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/23 冒险和预测(二):流水线里的接力赛.md.html">23 冒险和预测(二):流水线里的接力赛.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/24 冒险和预测(三):CPU里的“线程池”.md.html">24 冒险和预测(三):CPU里的“线程池”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html">25 冒险和预测(四):今天下雨了,明天还会下雨么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html">26 Superscalar和VLIW:如何让CPU的吞吐率超过1?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">27 SIMD:如何加速矩阵乘法?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
<a class="current-tab" href="/专栏/深入浅出计算机组成原理/28 异常和中断:程序出错了怎么办?.md.html">28 异常和中断:程序出错了怎么办?.md.html</a>
|
||
|
||
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">29 CISC和RISC:为什么手机芯片都是ARM?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/30 GPU(上):为什么玩游戏需要使用GPU?.md.html">30 GPU(上):为什么玩游戏需要使用GPU?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/31 GPU(下):为什么深度学习需要使用GPU?.md.html">31 GPU(下):为什么深度学习需要使用GPU?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html">32 FPGA、ASIC和TPU(上):计算机体系结构的黄金时代.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/33 解读TPU:设计和拆解一块ASIC芯片.md.html">33 解读TPU:设计和拆解一块ASIC芯片.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html">34 理解虚拟机:你在云上拿到的计算机是什么样的?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html">35 存储器层次结构全景:数据存储的大金字塔长什么样?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html">36 局部性原理:数据库性能跟不上,加个缓存就好了?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html">37 理解CPU Cache(上):“4毫秒”究竟值多少钱?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/38 高速缓存(下):你确定你的数据更新了么?.md.html">38 高速缓存(下):你确定你的数据更新了么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html">39 MESI协议:如何让多核CPU的高速缓存保持一致?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/40 理解内存(上):虚拟内存和内存保护是什么?.md.html">40 理解内存(上):虚拟内存和内存保护是什么?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/41 理解内存(下):解析TLB和内存保护.md.html">41 理解内存(下):解析TLB和内存保护.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/42 总线:计算机内部的高速公路.md.html">42 总线:计算机内部的高速公路.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html">43 输入输出设备:我们并不是只能用灯泡显示“0”和“1”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html">44 理解IO_WAIT:IO性能到底是怎么回事儿?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/45 机械硬盘:Google早期用过的“黑科技”.md.html">45 机械硬盘:Google早期用过的“黑科技”.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/46 SSD硬盘(上):如何完成性能优化的KPI?.md.html">46 SSD硬盘(上):如何完成性能优化的KPI?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/47 SSD硬盘(下):如何完成性能优化的KPI?.md.html">47 SSD硬盘(下):如何完成性能优化的KPI?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/48 DMA:为什么Kafka这么快?.md.html">48 DMA:为什么Kafka这么快?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/49 数据完整性(上):硬件坏了怎么办?.md.html">49 数据完整性(上):硬件坏了怎么办?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/50 数据完整性(下):如何还原犯罪现场?.md.html">50 数据完整性(下):如何还原犯罪现场?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/51 分布式计算:如果所有人的大脑都联网会怎样?.md.html">51 分布式计算:如果所有人的大脑都联网会怎样?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html">52 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html">53 设计大型DMP系统(下):SSD拯救了所有的DBA.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html">54 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html">55 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
|
||
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/结束语 知也无涯,愿你也享受发现的乐趣.md.html">结束语 知也无涯,愿你也享受发现的乐趣.md.html</a>
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
|
||
<div class="sidebar-toggle-inner"></div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script>
|
||
|
||
function add_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.add('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function remove_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
function sidebar_toggle() {
|
||
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let content = document.querySelector('.off-canvas-content')
|
||
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
|
||
sidebar_toggle.classList.remove('extend')
|
||
|
||
sidebar.classList.remove('hide')
|
||
|
||
content.classList.remove('extend')
|
||
|
||
} else { // hide
|
||
|
||
sidebar_toggle.classList.add('extend')
|
||
|
||
sidebar.classList.add('hide')
|
||
|
||
content.classList.add('extend')
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
function open_sidebar() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.add('show')
|
||
|
||
overlay.classList.add('show')
|
||
|
||
}
|
||
|
||
function hide_canvas() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.remove('show')
|
||
|
||
overlay.classList.remove('show')
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
<div class="off-canvas-content">
|
||
|
||
<div class="columns">
|
||
|
||
<div class="column col-12 col-lg-12">
|
||
|
||
<div class="book-navbar">
|
||
|
||
<!-- For Responsive Layout -->
|
||
|
||
<header class="navbar">
|
||
|
||
<section class="navbar-section">
|
||
|
||
<a onclick="open_sidebar()">
|
||
|
||
<i class="icon icon-menu"></i>
|
||
|
||
</a>
|
||
|
||
</section>
|
||
|
||
</header>
|
||
|
||
</div>
|
||
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
|
||
overflow-x: auto;
|
||
|
||
overflow-y: hidden;">
|
||
|
||
<div class="book-post">
|
||
|
||
<p id="tip" align="center"></p>
|
||
|
||
<div><h1>28 异常和中断:程序出错了怎么办?</h1>
|
||
|
||
<p>过去这么多讲,我们的程序都是自动运行且正常运行的。自动运行的意思是说,我们的程序和指令都是一条条顺序执行,你不需要通过键盘或者网络给这个程序任何输入。正常运行是说,我们的程序都是能够正常执行下去的,没有遇到计算溢出之类的程序错误。</p>
|
||
|
||
<p>不过,现实的软件世界可没有这么简单。一方面,程序不仅是简单的执行指令,更多的还需要和外部的输入输出打交道。另一方面,程序在执行过程中,还会遇到各种异常情况,比如除以 0、溢出,甚至我们自己也可以让程序抛出异常。</p>
|
||
|
||
<p>那这一讲,我就带你来看看,如果遇到这些情况,计算机是怎么运转的,也就是说,计算机究竟是如何处理异常的。</p>
|
||
|
||
<h2>异常:硬件、系统和应用的组合拳</h2>
|
||
|
||
<p>一提到计算机当中的<strong>异常</strong>(Exception),可能你的第一反应就是 C++ 或者 Java 中的 Exception。不过我们今天讲的,并不是这些软件开发过程中遇到的“软件异常”,而是和硬件、系统相关的“硬件异常”。</p>
|
||
|
||
<p>当然,“软件异常”和“硬件异常”并不是实际业界使用的专有名词,只是我为了方便给你说明,和 C++、Java 中软件抛出的 Exception 进行的人为区分,你明白这个意思就好。</p>
|
||
|
||
<p>尽管,这里我把这些硬件和系统相关的异常,叫作“硬件异常”。但是,实际上,这些异常,既有来自硬件的,也有来自软件层面的。</p>
|
||
|
||
<p>比如,我们在硬件层面,当加法器进行两个数相加的时候,会遇到算术溢出;或者,你在玩游戏的时候,按下键盘发送了一个信号给到 CPU,CPU 要去执行一个现有流程之外的指令,这也是一个“异常”。</p>
|
||
|
||
<p>同样,来自软件层面的,比如我们的程序进行系统调用,发起一个读文件的请求。这样应用程序向系统调用发起请求的情况,一样是通过“异常”来实现的。</p>
|
||
|
||
<p><strong>关于异常,最有意思的一点就是,它其实是一个硬件和软件组合到一起的处理过程。异常的前半生,也就是异常的发生和捕捉,是在硬件层面完成的。但是异常的后半生,也就是说,异常的处理,其实是由软件来完成的。</strong></p>
|
||
|
||
<p>计算机会为每一种可能会发生的异常,分配一个异常代码(Exception Number)。有些教科书会把异常代码叫作中断向量(Interrupt Vector)。异常发生的时候,通常是 CPU 检测到了一个特殊的信号。比如,你按下键盘上的按键,输入设备就会给 CPU 发一个信号。或者,正在执行的指令发生了加法溢出,同样,我们可以有一个进位溢出的信号。这些信号呢,在组成原理里面,我们一般叫作发生了一个事件(Event)。CPU 在检测到事件的时候,其实也就拿到了对应的异常代码。</p>
|
||
|
||
<p><strong>这些异常代码里,I/O 发出的信号的异常代码,是由操作系统来分配的,也就是由软件来设定的。而像加法溢出这样的异常代码,则是由 CPU 预先分配好的,也就是由硬件来分配的。这又是另一个软件和硬件共同组合来处理异常的过程。</strong></p>
|
||
|
||
<p>拿到异常代码之后,CPU 就会触发异常处理的流程。计算机在内存里,会保留一个异常表(Exception Table)。也有地方,把这个表叫作中断向量表(Interrupt Vector Table),好和上面的中断向量对应起来。这个异常表有点儿像我们在<a href="https://time.geekbang.org/column/article/95244">第 10 讲</a>里讲的 GOT 表,存放的是不同的异常代码对应的异常处理程序(Exception Handler)所在的地址。</p>
|
||
|
||
<p>我们的 CPU 在拿到了异常码之后,会先把当前的程序执行的现场,保存到程序栈里面,然后根据异常码查询,找到对应的异常处理程序,最后把后续指令执行的指挥权,交给这个异常处理程序。</p>
|
||
|
||
<p><img src="assets/e8a49f09d1bb50e4d42fccd14d743ad6.jpeg" alt="img" /></p>
|
||
|
||
<p>这样“检测异常,拿到异常码,再根据异常码进行查表处理”的模式,在日常开发的过程中是很常见的。</p>
|
||
|
||
<p><img src="assets/272b21cc50572c208b4db4b8ef8276f7.jpeg" alt="img" /></p>
|
||
|
||
<p>比如说,现在我们日常进行的 Web 或者 App 开发,通常都是前后端分离的。前端的应用,会向后端发起 HTTP 的请求。当后端遇到了异常,通常会给到前端一个对应的错误代码。前端的应用根据这个错误代码,在应用层面去进行错误处理。在不能处理的时候,它会根据错误代码向用户显示错误信息。</p>
|
||
|
||
<pre><code>public class LastChanceHandler implements Thread.UncaughtExceptionHandler {
|
||
|
||
@Override
|
||
|
||
public void uncaughtException(Thread t, Throwable e) {
|
||
|
||
// do something here - log to file and upload to server/close resources/delete files...
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
Thread.setDefaultUncaughtExceptionHandler(new LastChanceHandler());
|
||
|
||
</code></pre>
|
||
|
||
<p>Java 里面,可以设定 ExceptionHandler,来处理线程执行中的异常情况</p>
|
||
|
||
<p>再比如说,Java 里面,我们使用一个线程池去运行调度任务的时候,可以指定一个异常处理程序。对于各个线程在执行任务出现的异常情况,我们是通过异常处理程序进行处理,而不是在实际的任务代码里处理。这样,我们就把业务处理代码就和异常处理代码的流程分开了。</p>
|
||
|
||
<h2>异常的分类:中断、陷阱、故障和中止</h2>
|
||
|
||
<p>我在前面说了,异常可以由硬件触发,也可以由软件触发。那我们平时会碰到哪些异常呢?下面我们就一起来看看。</p>
|
||
|
||
<p>第一种异常叫<strong>中断</strong>(Interrupt)。顾名思义,自然就是程序在执行到一半的时候,被打断了。这个打断执行的信号,来自于 CPU 外部的 I/O 设备。你在键盘上按下一个按键,就会对应触发一个相应的信号到达 CPU 里面。CPU 里面某个开关的值发生了变化,也就触发了一个中断类型的异常。</p>
|
||
|
||
<p>第二种异常叫<strong>陷阱</strong>(Trap)。陷阱,其实是我们程序员“故意“主动触发的异常。就好像你在程序里面打了一个断点,这个断点就是设下的一个"陷阱"。当程序的指令执行到这个位置的时候,就掉到了这个陷阱当中。然后,对应的异常处理程序就会来处理这个"陷阱"当中的猎物。</p>
|
||
|
||
<p>最常见的一类陷阱,发生在我们的应用程序调用系统调用的时候,也就是从程序的用户态切换到内核态的时候。我们在<a href="https://time.geekbang.org/column/article/92215">第 3 讲</a>讲 CPU 性能的时候说过,可以用 Linux 下的 time 指令,去查看一个程序运行实际花费的时间,里面有在用户态花费的时间(user time),也有在内核态发生的时间(system time)。</p>
|
||
|
||
<p>我们的应用程序通过系统调用去读取文件、创建进程,其实也是通过触发一次陷阱来进行的。这是因为,我们用户态的应用程序没有权限来做这些事情,需要把对应的流程转交给有权限的异常处理程序来进行。</p>
|
||
|
||
<p>第三种异常叫<strong>故障</strong>(Fault)。它和陷阱的区别在于,陷阱是我们开发程序的时候刻意触发的异常,而故障通常不是。比如,我们在程序执行的过程中,进行加法计算发生了溢出,其实就是故障类型的异常。这个异常不是我们在开发的时候计划内的,也一样需要有对应的异常处理程序去处理。</p>
|
||
|
||
<p>故障和陷阱、中断的一个重要区别是,故障在异常程序处理完成之后,仍然回来处理当前的指令,而不是去执行程序中的下一条指令。因为当前的指令因为故障的原因并没有成功执行完成。</p>
|
||
|
||
<p>最后一种异常叫<strong>中止</strong>(Abort)。与其说这是一种异常类型,不如说这是故障的一种特殊情况。当 CPU 遇到了故障,但是恢复不过来的时候,程序就不得不中止了。</p>
|
||
|
||
<p><img src="assets/da0117e669ebd2bd06c19beaf12d0da8.jpeg" alt="img" /></p>
|
||
|
||
<p>在这四种异常里,中断异常的信号来自系统外部,而不是在程序自己执行的过程中,所以我们称之为“异步”类型的异常。而陷阱、故障以及中止类型的异常,是在程序执行的过程中发生的,所以我们称之为“同步“类型的异常。</p>
|
||
|
||
<p>在处理异常的过程当中,无论是异步的中断,还是同步的陷阱和故障,我们都是采用同一套处理流程,也就是上面所说的,“保存现场、异常代码查询、异常处理程序调用“。而中止类型的异常,其实是在故障类型异常的一种特殊情况。当故障发生,但是我们发现没有异常处理程序能够处理这种异常的情况下,程序就不得不进入中止状态,也就是最终会退出当前的程序执行。</p>
|
||
|
||
<h2>异常的处理:上下文切换</h2>
|
||
|
||
<p>在实际的异常处理程序执行之前,CPU 需要去做一次“保存现场”的操作。这个保存现场的操作,和我在<a href="https://time.geekbang.org/column/article/94427">第 7 讲</a>里讲解函数调用的过程非常相似。</p>
|
||
|
||
<p>因为切换到异常处理程序的时候,其实就好像是去调用一个异常处理函数。指令的控制权被切换到了另外一个"函数"里面,所以我们自然要把当前正在执行的指令去压栈。这样,我们才能在异常处理程序执行完成之后,重新回到当前的指令继续往下执行。</p>
|
||
|
||
<p>不过,切换到异常处理程序,比起函数调用,还是要更复杂一些。原因有下面几点。</p>
|
||
|
||
<p>第一点,因为异常情况往往发生在程序正常执行的预期之外,比如中断、故障发生的时候。所以,除了本来程序压栈要做的事情之外,我们还需要把 CPU 内当前运行程序用到的所有寄存器,都放到栈里面。最典型的就是条件码寄存器里面的内容。</p>
|
||
|
||
<p>第二点,像陷阱这样的异常,涉及程序指令在用户态和内核态之间的切换。对应压栈的时候,对应的数据是压到内核栈里,而不是程序栈里。</p>
|
||
|
||
<p>第三点,像故障这样的异常,在异常处理程序执行完成之后。从栈里返回出来,继续执行的不是顺序的下一条指令,而是故障发生的当前指令。因为当前指令因为故障没有正常执行成功,必须重新去执行一次。</p>
|
||
|
||
<p>所以,对于异常这样的处理流程,不像是顺序执行的指令间的函数调用关系。而是更像两个不同的独立进程之间在 CPU 层面的切换,所以这个过程我们称之为<strong>上下文切换</strong>(Context Switch)。</p>
|
||
|
||
<h2>总结延伸</h2>
|
||
|
||
<p>这一讲,我给你讲了计算机里的“异常”处理流程。这里的异常可以分成中断、陷阱、故障、中止这样四种情况。这四种异常,分别对应着 I/O 设备的输入、程序主动触发的状态切换、异常情况下的程序出错以及出错之后无可挽回的退出程序。</p>
|
||
|
||
<p>当 CPU 遭遇了异常的时候,计算机就需要有相应的应对措施。CPU 会通过“查表法”来解决这个问题。在硬件层面和操作系统层面,各自定义了所有 CPU 可能会遇到的异常代码,并且通过这个异常代码,在异常表里面查询相应的异常处理程序。在捕捉异常的时候,我们的硬件 CPU 在进行相应的操作,而在处理异常层面,则是由作为软件的异常处理程序进行相应的操作。</p>
|
||
|
||
<p>而在实际处理异常之前,计算机需要先去做一个“保留现场”的操作。有了这个操作,我们才能在异常处理完成之后,重新回到之前执行的指令序列里面来。这个保留现场的操作,和我们之前讲解指令的函数调用很像。但是,因为“异常”和函数调用有一个很大的不同,那就是它的发生时间。函数调用的压栈操作我们在写程序的时候完全能够知道,而“异常”发生的时间却很不确定。所以,“异常”发生的时候,我们称之为发生了一次“上下文切换”(Context Switch)。这个时候,除了普通需要压栈的数据外,计算机还需要把所有寄存器信息都存储到栈里面去。</p>
|
||
|
||
<h2>推荐阅读</h2>
|
||
|
||
<p>关于异常和中断,《深入理解计算机系统》的第 8 章“异常控制流”部分,有非常深入和充分的讲解,推荐你认真阅读一下。</p>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div>
|
||
|
||
<div style="float: left">
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/27 SIMD:如何加速矩阵乘法?.md.html">上一页</a>
|
||
|
||
</div>
|
||
|
||
<div style="float: right">
|
||
|
||
<a href="/专栏/深入浅出计算机组成原理/29 CISC和RISC:为什么手机芯片都是ARM?.md.html">下一页</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
|
||
</div>
|
||
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997ac36cb33cfa","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
|
||
</body>
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
|
||
<script>
|
||
|
||
window.dataLayer = window.dataLayer || [];
|
||
|
||
|
||
|
||
function gtag() {
|
||
|
||
dataLayer.push(arguments);
|
||
|
||
}
|
||
|
||
|
||
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-NPSEEVD756');
|
||
|
||
var path = window.location.pathname
|
||
|
||
var cookie = getCookie("lastPath");
|
||
|
||
console.log(path)
|
||
|
||
if (path.replace("/", "") === "") {
|
||
|
||
if (cookie.replace("/", "") !== "") {
|
||
|
||
console.log(cookie)
|
||
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
setCookie("lastPath", path)
|
||
|
||
}
|
||
|
||
|
||
|
||
function setCookie(cname, cvalue) {
|
||
|
||
var d = new Date();
|
||
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
|
||
var expires = "expires=" + d.toGMTString();
|
||
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
|
||
}
|
||
|
||
|
||
|
||
function getCookie(cname) {
|
||
|
||
var name = cname + "=";
|
||
|
||
var ca = document.cookie.split(';');
|
||
|
||
for (var i = 0; i < ca.length; i++) {
|
||
|
||
var c = ca[i].trim();
|
||
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
|
||
}
|
||
|
||
return "";
|
||
|
||
}
|
||
|
||
|
||
|
||
</script>
|
||
|
||
|
||
|
||
</html>
|
||
|