mirror of
https://github.com/zhwei820/learn.lianglianglee.com.git
synced 2025-09-30 07:06:42 +08:00
633 lines
30 KiB
HTML
633 lines
30 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
||
<head>
|
||
|
||
<head>
|
||
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
|
||
|
||
<link rel="icon" href="/static/favicon.png">
|
||
|
||
<title>15 如何深入理解、应用及扩展 Twemproxy?.md.html</title>
|
||
|
||
<!-- Spectre.css framework -->
|
||
|
||
<link rel="stylesheet" href="/static/index.css">
|
||
|
||
<!-- theme css & js -->
|
||
|
||
<meta name="generator" content="Hexo 4.2.0">
|
||
|
||
</head>
|
||
<body>
|
||
<div class="book-container">
|
||
|
||
<div class="book-sidebar">
|
||
|
||
<div class="book-brand">
|
||
|
||
<a href="/">
|
||
|
||
<img src="/static/favicon.png">
|
||
|
||
<span>技术文章摘抄</span>
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<div class="book-menu uncollapsible">
|
||
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="/" class="current-tab">首页</a></li>
|
||
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
|
||
<li><a href="../">上一级</a></li>
|
||
|
||
</ul>
|
||
<ul class="uncollapsible">
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/00 开篇寄语:缓存,你真的用对了吗?.md.html">00 开篇寄语:缓存,你真的用对了吗?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/01 业务数据访问性能太低怎么办?.md.html">01 业务数据访问性能太低怎么办?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/02 如何根据业务来选择缓存模式和组件?.md.html">02 如何根据业务来选择缓存模式和组件?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/03 设计缓存架构时需要考量哪些因素?.md.html">03 设计缓存架构时需要考量哪些因素?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/04 缓存失效、穿透和雪崩问题怎么处理?.md.html">04 缓存失效、穿透和雪崩问题怎么处理?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/05 缓存数据不一致和并发竞争怎么处理?.md.html">05 缓存数据不一致和并发竞争怎么处理?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/06 Hot Key和Big Key引发的问题怎么应对?.md.html">06 Hot Key和Big Key引发的问题怎么应对?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/07 MC为何是应用最广泛的缓存组件?.md.html">07 MC为何是应用最广泛的缓存组件?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/08 MC系统架构是如何布局的?.md.html">08 MC系统架构是如何布局的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/09 MC是如何使用多线程和状态机来处理请求命令的?.md.html">09 MC是如何使用多线程和状态机来处理请求命令的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/10 MC是怎么定位key的.md.html">10 MC是怎么定位key的.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/11 MC如何淘汰冷key和失效key.md.html">11 MC如何淘汰冷key和失效key.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/12 为何MC能长期维持高性能读写?.md.html">12 为何MC能长期维持高性能读写?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/13 如何完整学习MC协议及优化client访问?.md.html">13 如何完整学习MC协议及优化client访问?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/14 大数据时代,MC如何应对新的常见问题?.md.html">14 大数据时代,MC如何应对新的常见问题?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
<a class="current-tab" href="/专栏/300分钟吃透分布式缓存-完/15 如何深入理解、应用及扩展 Twemproxy?.md.html">15 如何深入理解、应用及扩展 Twemproxy?.md.html</a>
|
||
|
||
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/16 常用的缓存组件Redis是如何运行的?.md.html">16 常用的缓存组件Redis是如何运行的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/17 如何理解、选择并使用Redis的核心数据类型?.md.html">17 如何理解、选择并使用Redis的核心数据类型?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/18 Redis协议的请求和响应有哪些“套路”可循?.md.html">18 Redis协议的请求和响应有哪些“套路”可循?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/19 Redis系统架构中各个处理模块是干什么的?.md.html">19 Redis系统架构中各个处理模块是干什么的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/20 Redis如何处理文件事件和时间事件?.md.html">20 Redis如何处理文件事件和时间事件?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/21 Redis读取请求数据后,如何进行协议解析和处理.md.html">21 Redis读取请求数据后,如何进行协议解析和处理.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/22 怎么认识和应用Redis内部数据结构?.md.html">22 怎么认识和应用Redis内部数据结构?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/23 Redis是如何淘汰key的?.md.html">23 Redis是如何淘汰key的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/24 Redis崩溃后,如何进行数据恢复的?.md.html">24 Redis崩溃后,如何进行数据恢复的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/25 Redis是如何处理容易超时的系统调用的?.md.html">25 Redis是如何处理容易超时的系统调用的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/26 如何大幅成倍提升Redis处理性能?.md.html">26 如何大幅成倍提升Redis处理性能?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/27 Redis是如何进行主从复制的?.md.html">27 Redis是如何进行主从复制的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/28 如何构建一个高性能、易扩展的Redis集群?.md.html">28 如何构建一个高性能、易扩展的Redis集群?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/29 从容应对亿级QPS访问,Redis还缺少什么?.md.html">29 从容应对亿级QPS访问,Redis还缺少什么?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html">30 面对海量数据,为什么无法设计出完美的分布式缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html">31 如何设计足够可靠的分布式缓存体系,以满足大中型移动互联网系统的需要?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/32 一个典型的分布式缓存系统是什么样的?.md.html">32 一个典型的分布式缓存系统是什么样的?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/33 如何为秒杀系统设计缓存体系?.md.html">33 如何为秒杀系统设计缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/34 如何为海量计数场景设计缓存体系?.md.html">34 如何为海量计数场景设计缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
<li>
|
||
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/35 如何为社交feed场景设计缓存体系?.md.html">35 如何为社交feed场景设计缓存体系?.md.html</a>
|
||
</li>
|
||
|
||
</ul>
|
||
</div>
|
||
|
||
</div>
|
||
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
|
||
|
||
<div class="sidebar-toggle-inner"></div>
|
||
|
||
</div>
|
||
<script>
|
||
|
||
function add_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.add('show')
|
||
|
||
}
|
||
function remove_inner() {
|
||
|
||
let inner = document.querySelector('.sidebar-toggle-inner')
|
||
|
||
inner.classList.remove('show')
|
||
|
||
}
|
||
function sidebar_toggle() {
|
||
|
||
let sidebar_toggle = document.querySelector('.sidebar-toggle')
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let content = document.querySelector('.off-canvas-content')
|
||
|
||
if (sidebar_toggle.classList.contains('extend')) { // show
|
||
|
||
sidebar_toggle.classList.remove('extend')
|
||
|
||
sidebar.classList.remove('hide')
|
||
|
||
content.classList.remove('extend')
|
||
|
||
} else { // hide
|
||
|
||
sidebar_toggle.classList.add('extend')
|
||
|
||
sidebar.classList.add('hide')
|
||
|
||
content.classList.add('extend')
|
||
|
||
}
|
||
|
||
}
|
||
|
||
|
||
function open_sidebar() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.add('show')
|
||
|
||
overlay.classList.add('show')
|
||
|
||
}
|
||
|
||
function hide_canvas() {
|
||
|
||
let sidebar = document.querySelector('.book-sidebar')
|
||
|
||
let overlay = document.querySelector('.off-canvas-overlay')
|
||
|
||
sidebar.classList.remove('show')
|
||
|
||
overlay.classList.remove('show')
|
||
|
||
}
|
||
</script>
|
||
<div class="off-canvas-content">
|
||
|
||
<div class="columns">
|
||
|
||
<div class="column col-12 col-lg-12">
|
||
|
||
<div class="book-navbar">
|
||
|
||
<!-- For Responsive Layout -->
|
||
|
||
<header class="navbar">
|
||
|
||
<section class="navbar-section">
|
||
|
||
<a onclick="open_sidebar()">
|
||
|
||
<i class="icon icon-menu"></i>
|
||
|
||
</a>
|
||
|
||
</section>
|
||
|
||
</header>
|
||
|
||
</div>
|
||
|
||
<div class="book-content" style="max-width: 960px; margin: 0 auto;
|
||
|
||
overflow-x: auto;
|
||
|
||
overflow-y: hidden;">
|
||
|
||
<div class="book-post">
|
||
|
||
<p id="tip" align="center"></p>
|
||
|
||
<div><h1>15 如何深入理解、应用及扩展 Twemproxy?</h1>
|
||
|
||
<p>你好,我是你的缓存课老师陈波,欢迎进入第 15 课时“Twemproxy 框架、应用及扩展”的学习。</p>
|
||
|
||
<h6>Twemproxy 架构及应用</h6>
|
||
|
||
<p>Twemproxy 是 Twitter 的一个开源架构,它是一个分片资源访问的代理组件。如下图所示,它可以封装资源池的分布及 hash 规则,解决后端部分节点异常后的探测和重连问题,让 client 访问尽可能简单,同时资源变更时,只要在 Twemproxy 变更即可,不用更新数以万计的 client,让资源变更更轻量。最后,Twemproxy 跟后端通过单个长连接访问,可以大大减少后端资源的连接压力。</p>
|
||
|
||
<h6>系统架构</h6>
|
||
|
||
<p>接下来分析基于 Twemproxy 的应用系统架构,以及 Twemproxy 组件的内部架构。</p>
|
||
|
||
<p>如下图所示, 在应用系统中,Twemproxy 是一个介于 client 端和资源端的中间层。它的后端,支持Memcached 资源池和 Redis 资源池的分片访问。Twemproxy 支持取模分布和一致性 hash 分布,还支持随机分布,不过使用场景较少。</p>
|
||
|
||
<p><img src="assets/CgoB5l2lO3yAe8fPAAD79T2nfL4556.png" alt="img" /></p>
|
||
|
||
<p>应用前端在请求缓存数据时,直接访问 Twemproxy 的对应端口,然后 Twemproxy 解析命令得到 key,通过 hash 计算后,按照分布策略,将 key 路由到后端资源的分片。在后端资源响应后,再将响应结果返回给对应的 client。</p>
|
||
|
||
<p>在系统运行中,Twemproxy 会自动维护后端资源服务的状态。如果后端资源服务异常,会自动进行剔除,并定期探测,在后端资源恢复后,再对缓存节点恢复正常使用。</p>
|
||
|
||
<h6>组件架构</h6>
|
||
|
||
<p>Twemproxy 是基于 epoll 事件驱动模型开发的,架构如下图所示。它是一个单进程、单线程组件。核心进程处理所有的事件,包括网络 IO,协议解析,消息路由等。Twemproxy 可以监听多个端口,每个端口接受并处理一个业务的缓存请求。Twemproxy 支持 Redis、Memcached 协议,支持一致性 hash 分布、取模分布、随机分布三种分布方案。Twemproxy 通过 YAML 文件进行配置,简单清晰,且便于人肉读写。</p>
|
||
|
||
<p><img src="assets/CgotOV2lO3yAb15JAACUX73nZuE067.png" alt="img" /></p>
|
||
|
||
<p>Twemproxy 与后端资源通过单个长连接访问,在收到业务大量并发请求后,会通过 pipeline 的方式,将多个请求批量发到后端。在后端资源持续访问异常时,Twemproxy 会将其从正常列表中剔除,并不断探测,待其恢复后再进行请求的路由分发。</p>
|
||
|
||
<p>Twemproxy 运行中,会持续产生海量请求及响应的消息流,于是开发者精心设计了内存管理机制,尽可能的减少内存分配和复制,最大限度的提升系统性能。Twemproxy 内部,请求和响应都是一个消息,而这个消息结构体,以及消息存放数据的缓冲都是重复使用的,避免反复分配和回收的开销,提升消息处理的性能。为了解决短连接的问题,Twemproxy 的连接也是复用的,这样在面对 PHP client 等短连接访问时,也可以反复使用之前分配的 connection,提升连接性能。</p>
|
||
|
||
<p>另外,Twemproxy 对消息还采用了 zero copy(即零拷贝)方案。对于请求消息,只在client 接受时读取一次,后续的解析、处理、转发都不进行拷贝,全部共享最初的那个消息缓冲。对于后端的响应也采用类似方案,只在接受后端响应时,读取到消息缓冲,后续的解析、处理及回复 client 都不进行拷贝。通过共享消息体及消息缓冲,虽然 Twemproxy 是单进程/单线程处理,仍然可以达到 6~8w 以上的 QPS。</p>
|
||
|
||
<h6>Twemproxy 请求及响应</h6>
|
||
|
||
<p>接下来看一下 Twemproxy 是如何进行请求路由及响应的。</p>
|
||
|
||
<p>Twemproxy 监听端口,当有 client 连接进来时,则 accept 新连接,并构建初始化一个 client_conn。当建连完毕,client 发送数据到来时,client_conn 收到网络读事件,则从网卡读取数据,并记入请求消息的缓冲中。读取完毕,则开始按照配置的协议进行解析,解析成功后,就将请求 msg 放入到 client_conn 的 out 队列中。接下来,就对解析的命令 key 进行 hash 计算,并根据分布算法,找到对应 server 分片的连接,即一个 server_conn 结构体,如下图。</p>
|
||
|
||
<p><img src="assets/CgoB5l2lO3yAH925AAC54TkIVYU700.png" alt="img" /></p>
|
||
|
||
<p>如果 server_conn的 in 队列为空,首先对 server_conn 触发一个写事件。然后将 req msg 存入到 server_conn 的 in 队列。Server_conn 在处理写事件时,会对 in 队列中的 req msg 进行聚合,按照 pipeline 的方式批量发送到后端资源。待发送完毕后,将该条请求 msg 从 server_conn 的 in 队列删除,并插入到 out 队列中。
|
||
|
||
后端资源服务完成请求后,会将响应发送给 Twemproxy。当响应到 Twemproxy 后,对应的 server_conn 会收到 epoll 读事件,则开始读取响应 msg。响应读取并解析后,会首先将server_conn 中,out 队列的第一个 req msg 删除,并将这个 req msg 和最新收到的 rsp msg 进行配对。在 req 和 rsp 匹配后,触发 client_conn 的写事件,如下图。</p>
|
||
|
||
<p><img src="assets/CgotOV2lO3yAOj8dAAB6Uhh2F5U672.png" alt="img" /></p>
|
||
|
||
<p>然后 client_conn 在处理 epoll 写事件时,则按照请求顺序,批量将响应发送给 client 端。发送完毕后,将 req msg 从 client 的 out 队列删除。最后,再回收消息缓冲,以及消息结构体,供后续请求处理的时候复用。至此一个请求的处理彻底完成。</p>
|
||
|
||
<h6>Twemproxy 安装和使用</h6>
|
||
|
||
<p>Twemproxy 的安装和使用比较简单。首先通过 Git,将 Twemproxy 从 GitHub clone 到目标服务器,然后进入 Twemproxy 路径,首先执行 $ autoreconf -fvi,然后执行 ./configure ,最后执行 make(当然,也可以再执行 make install),这样就完成了 Temproxy 的编译和安装。然后就可以通过 src/nutcracker -c /xxx/conf/nutcracker.yml 来启动 Twemproxy 了。</p>
|
||
|
||
<p>Twemproxy 代理后端资源访问,这些后端资源的部署信息及访问策略都是在 YAML 文件中配置。所以接下来,我们简单看一下 Twemproxy 的配置。如图所示,这个配置中代理了 2 个业务数据的缓存访问。一个是 alpha,另一个是 beta。在每个业务的配置详情里。首先是 listen 配置项,用于设置监听该业务的端口。然后是 hash 算法和分布算法。Auto_eject_hosts 用于设置在后端 server 异常时,是否将这个异常 server 剔除,然后进行 rehash,默认不剔除。Redis配置项用于指示后端资源类型,是 Redis 还是 Memcached。最后一个配置项 servers,用于设置资源池列表。</p>
|
||
|
||
<p>以 Memcached 访问为例,将业务的 Memcached 资源部署好之后,然后将 Mc 资源列表、访问方式等设到 YAML 文件的配置项,然后启动 Twemproxy,业务端就可以通过访问 Twemproxy ,来获取后端资源的数据了。后续,Mc 资源有任何变更,业务都不用做任何改变,运维直接修改 Twemproxy 的配置即可。</p>
|
||
|
||
<p>Twemproxy 在实际线的使用中,还是存在不少问题的。首先,它是单进程/单线程模型,一个 event_base 要处理所有的事件,这些事件包括 client 请求的读入,转发请求给后端 server,从 server 接受响应,以及将响应发送给 client。单个 Twemproxy 实例,压测最大可以到 8w 左右的 QPS,出于线上稳定性考虑,QPS 最多支撑到 3~4w。而 Memcached 的线上 QPS,一般可以达到 10~20w,一个 Mc 实例前面要挂 3~5 个 Twemproxy 实例。实例数太多,就会引发诸如管理复杂、成本过高等一系列问题。</p>
|
||
|
||
<p>其次,基于性能及预防单点故障的考虑,Twemproxy 需要进行多实例部署,而且还需要根据业务访问量的变化,进行新实例的加入或冗余实例的下线。多个 Twemproxy 实例同时被访问,如果 client 访问策略不当,就会出现有些 Twemproxy 压力过大,而有些却很空闲,造成访问不均的问题。</p>
|
||
|
||
<p>再次,后端资源在 Twemproxy 的 YAML 文件集中配置,资源变更的维护,比直接在所有业务 client 端维护,有了很大的简化。但在多个 Twemproxy 修改配置,让这些配置同时生效,也是一个复杂的工作。</p>
|
||
|
||
<p>最后,Twemproxy 也无法支持 Mc 多副本、多层次架构的访问策略,无法支持 Redis 的Master-Slave 架构的读写分离访问。</p>
|
||
|
||
<p>为此,你可以对 Twemproxy 进行扩展,以更好得满足业务及运维的需要。</p>
|
||
|
||
<h6>Twemproxy 扩展</h6>
|
||
|
||
<h6>多进程改造</h6>
|
||
|
||
<p>性能首当其冲。首先可以对 Twemproxy 的单进程/单线程动刀,改为并行处理模型。并行方案可以用多线程方案,也可以采用多进程方案。由于 Twemproxy 只是一个消息路由中间件,不需要额外共享数据,采用多进程方案会更简洁,更适合。</p>
|
||
|
||
<p>多进程改造中,可以分别构建一个 master 进程和多个 worker 进程来进行任务处理,如下图所示。每个进程维护自己独立的 epoll 事件驱动。其中 master 进程,主要用于监听端口,accept 新连接,并将连接调度给 worker 进程。</p>
|
||
|
||
<p><img src="assets/CgotOV2lO3yAApZHAACxEUrIpz8577.png" alt="img" /></p>
|
||
|
||
<p>而 worker 进程,基于自己独立的 event_base,管理从 master 调度给自己的所有 client 连接。在 client 发送网络请求到达时,进行命令读取、解析,并在进程内的 IO 队列流转,最后将请求打包,pipeline 给后端的 server。</p>
|
||
|
||
<p>在 server 处理完毕请求,发回响应时。对应 worker 进程,会读取并解析响应,然后批量回复给 client。</p>
|
||
|
||
<p>通过多进程改造,Twemproxy 的 QPS 可以从 8w 提升到 40w+。业务访问时,需要部署的Twemproxy 的实例数会大幅减少,运维会更加简洁。</p>
|
||
|
||
<h6>增加负载均衡</h6>
|
||
|
||
<p>对于多个 Twemproxy 访问,如何进行负载均衡的问题。一般有三种方案。</p>
|
||
|
||
<p>第一种方案,是在 Twemproxy 和业务访问端之间,再增加一组 LVS,作为负载均衡层,通过 LVS 负载均衡层,你可以方便得增加或减少 Twemproxy 实例,由 LVS 负责负载均衡和请求分发,如下图。</p>
|
||
|
||
<p><img src="assets/CgoB5l2lO32AO_WQAAD00V71n90349.png" alt="img" /></p>
|
||
|
||
<p>第二种方案,是将 Twemproxy 的 IP 列表加入 DNS。业务 client 通过域名来访问 Twemproxy,每次建连时,DNS 随机返回一个 IP,让连接尽可能均衡。</p>
|
||
|
||
<p>第三种方案,是业务 client 自定义均衡策略。业务 client 从配置中心或 DNS 获取所有的Twemproxy 的 IP 列表,然后对这些 Twemproxy 进行均衡访问,从而达到负载均衡。</p>
|
||
|
||
<p>方案一,可以通过成熟的 LVS 方案,高效稳定的支持负载均衡策略,但多了一层,成本和运维的复杂度会有所增加。方案二,只能做到连接均衡,访问请求是否均衡,无法保障。方案三,成本最低,性能也比前面 2 个方案更高效。推荐使用方案三,微博内部也是采用第三种方案。</p>
|
||
|
||
<h6>增加配置中心</h6>
|
||
|
||
<p>对于 Twemproxy 配置的维护,可以通过增加一个配置中心服务来解决。将 YAML 配置文件中的所有配置信息,包括后端资源的部署信息、访问信息,以配置的方式存储到配置中心,如下图。</p>
|
||
|
||
<p><img src="assets/CgotOV2lO32AZAvhAADFfzUIYUo604.png" alt="img" /></p>
|
||
|
||
<p>Twemproxy 启动时,首先到配置中心订阅并拉取配置,然后解析并正常启动。Twemproxy 将自己的 IP 和监听端口信息,也注册到配置中心。业务 client 从配置中心,获取Twemproxy 的部署信息,然后进行均衡访问。</p>
|
||
|
||
<p>在后端资源变更时,直接更新配置中心的配置。配置中心会通知所有 Twemproxy 实例,收到事件通知,Twemproxy 即可拉取最新配置,并调整后端资源的访问,实现在线变更。整个过程自动完成,更加高效和可靠。</p>
|
||
|
||
<h6>支持 M-S-L1 多层访问</h6>
|
||
|
||
<p>前面提到,为了应对突发洪水流量,避免硬件局部故障的影响,对 Mc 访问采用了Master-Slave-L1 架构。可以将该缓存架构体系的访问策略,封装到 Twemproxy 内部。实现方案也比较简单。首先在 servers 配置中,增加 Master、Slave、L1 三层,如下图。</p>
|
||
|
||
<p><img src="assets/CgoB5l2lO32AVIRKAACszZ_Nluc455.png" alt="img" /></p>
|
||
|
||
<p>Twemproxy 启动时,每个 worker 进程预连所有的 Mc 后端,当收到 client 请求时,根据解析出来的指令,分别采用不同访问策略即可。</p>
|
||
|
||
<ul>
|
||
|
||
<li>对于 get 请求,首先随机选择一个 L1 来访问,如果 miss,继续访问 Master 和 Slave。中间在任何一层命中,则回写。</li>
|
||
|
||
<li>对于 gets 请求,需要以 master 为准,从 master 读取。如果 master 获取失败,则从 slave获取,获取后回种到 master,然后再次从 master 获取,确保得到 cas unique id 来自 master。</li>
|
||
|
||
<li>对于 add/cas 等请求,首先请求 master,成功后,再将 key/value 通过 set 指令,写到 slave 和所有 L1。</li>
|
||
|
||
<li>对于 set 请求,最简单,直接 set 所有资源池即可。</li>
|
||
|
||
<li>对于 stats 指令的响应,由 Twemproxy 自己统计,或者到后端 Mc 获取后聚合获得。</li>
|
||
|
||
</ul>
|
||
|
||
<h6>Redis 主从访问</h6>
|
||
|
||
<p>Redis 支持主从复制,为了支持更大并发访问量,同时减少主库的压力,一般会部署多个从库,写操作直接请求 Redis 主库,读操作随机选择一个 Redis 从库。这个逻辑同样可以封装在Twemproxy 中。如下图所示,Redis 的主从配置信息,可以用域名的方式,也可以用 IP 端口的方式记录在配置中心,由 Twemproxy 订阅并实时更新,从而在 Redis 增减 slave、主从切换时,及时对后端进行访问变更。</p>
|
||
|
||
<p><img src="assets/CgotOV2lO32AZFmuAADIr6HA6UE775.png" alt="img" /></p>
|
||
|
||
<p>本课时,讲解了大数据时代下大中型互联网系统的特点,访问 Memcached 缓存时的经典问题及应对方案;还讲解了如何通过分拆缓存池、Master-Slave 双层架构,来解决 Memcached 的容量问题、性能瓶颈、连接瓶颈、局部故障的问题,以及 Master-Slave-L1 三层架构,通过多层、多副本 Memcached 体系,来更好得解决突发洪峰流量和局部故障的问题。</p>
|
||
|
||
<p>本节课重点学习了基于 Twemproxy 的应用系统架构方案,学习了 Twemproxy 的系统架构和关键技术,学习了 Twemproxy 的部署及配置信息。最后还学习了如何扩展 Twemproxy,从而使 Twemproxy 具有更好的性能、可用性和可运维性。</p>
|
||
|
||
<p>可以参考下面的思维导图,对这些知识点进行回顾和梳理。</p>
|
||
|
||
<p><img src="assets/CgoB5l2lO32AAYynAADMMM1Tbrw025.png" alt="img" /></p>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div>
|
||
|
||
<div style="float: left">
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/14 大数据时代,MC如何应对新的常见问题?.md.html">上一页</a>
|
||
|
||
</div>
|
||
|
||
<div style="float: right">
|
||
|
||
<a href="/专栏/300分钟吃透分布式缓存-完/16 常用的缓存组件Redis是如何运行的?.md.html">下一页</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
|
||
|
||
</div>
|
||
|
||
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70996e4ffa013d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
|
||
|
||
</body>
|
||
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
|
||
|
||
<script>
|
||
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag() {
|
||
|
||
dataLayer.push(arguments);
|
||
|
||
}
|
||
gtag('js', new Date());
|
||
|
||
gtag('config', 'G-NPSEEVD756');
|
||
|
||
var path = window.location.pathname
|
||
|
||
var cookie = getCookie("lastPath");
|
||
|
||
console.log(path)
|
||
|
||
if (path.replace("/", "") === "") {
|
||
|
||
if (cookie.replace("/", "") !== "") {
|
||
|
||
console.log(cookie)
|
||
|
||
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
setCookie("lastPath", path)
|
||
|
||
}
|
||
function setCookie(cname, cvalue) {
|
||
|
||
var d = new Date();
|
||
|
||
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
|
||
|
||
var expires = "expires=" + d.toGMTString();
|
||
|
||
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
|
||
|
||
}
|
||
function getCookie(cname) {
|
||
|
||
var name = cname + "=";
|
||
|
||
var ca = document.cookie.split(';');
|
||
|
||
for (var i = 0; i < ca.length; i++) {
|
||
|
||
var c = ca[i].trim();
|
||
|
||
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
|
||
|
||
}
|
||
|
||
return "";
|
||
|
||
}
|
||
</script>
|
||
</html>
|
||
|