learn.lianglianglee.com/专栏/Java 并发编程 78 讲-完/12 有哪 6 种常见的线程池?什么是 Java8 的 ForkJoinPool?.md.html
2022-05-11 18:57:05 +08:00

1651 lines
40 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- saved from url=(0046)https://kaiiiz.github.io/hexo-theme-book-demo/ -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.0, user-scalable=no">
<link rel="icon" href="/static/favicon.png">
<title>12 有哪 6 种常见的线程池?什么是 Java8 的 ForkJoinPool.md.html</title>
<!-- Spectre.css framework -->
<link rel="stylesheet" href="/static/index.css">
<!-- theme css & js -->
<meta name="generator" content="Hexo 4.2.0">
</head>
<body>
<div class="book-container">
<div class="book-sidebar">
<div class="book-brand">
<a href="/">
<img src="/static/favicon.png">
<span>技术文章摘抄</span>
</a>
</div>
<div class="book-menu uncollapsible">
<ul class="uncollapsible">
<li><a href="/" class="current-tab">首页</a></li>
</ul>
<ul class="uncollapsible">
<li><a href="../">上一级</a></li>
</ul>
<ul class="uncollapsible">
<li>
<a href="/专栏/Java 并发编程 78 讲-完/00 由点及面,搭建你的 Java 并发知识网.md.html">00 由点及面,搭建你的 Java 并发知识网.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/01 为何说只有 1 种实现线程的方法?.md.html">01 为何说只有 1 种实现线程的方法?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/02 如何正确停止线程?为什么 volatile 标记位的停止方法是错误的?.md.html">02 如何正确停止线程?为什么 volatile 标记位的停止方法是错误的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/03 线程是如何在 6 种状态之间转换的?.md.html">03 线程是如何在 6 种状态之间转换的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/04 waitnotifynotifyAll 方法的使用注意事项?.md.html">04 waitnotifynotifyAll 方法的使用注意事项?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/05 有哪几种实现生产者消费者模式的方法?.md.html">05 有哪几种实现生产者消费者模式的方法?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/06 一共有哪 3 类线程安全问题?.md.html">06 一共有哪 3 类线程安全问题?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/07 哪些场景需要额外注意线程安全问题?.md.html">07 哪些场景需要额外注意线程安全问题?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/08 为什么多线程会带来性能问题?.md.html">08 为什么多线程会带来性能问题?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/09 使用线程池比手动创建线程好在哪里?.md.html">09 使用线程池比手动创建线程好在哪里?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/10 线程池的各个参数的含义?.md.html">10 线程池的各个参数的含义?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/11 线程池有哪 4 种拒绝策略?.md.html">11 线程池有哪 4 种拒绝策略?.md.html</a>
</li>
<li>
<a class="current-tab" href="/专栏/Java 并发编程 78 讲-完/12 有哪 6 种常见的线程池?什么是 Java8 的 ForkJoinPool.md.html">12 有哪 6 种常见的线程池?什么是 Java8 的 ForkJoinPool.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/13 线程池常用的阻塞队列有哪些?.md.html">13 线程池常用的阻塞队列有哪些?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/14 为什么不应该自动创建线程池?.md.html">14 为什么不应该自动创建线程池?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/15 合适的线程数量是多少CPU 核心数和线程数的关系?.md.html">15 合适的线程数量是多少CPU 核心数和线程数的关系?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/16 如何根据实际需要,定制自己的线程池?.md.html">16 如何根据实际需要,定制自己的线程池?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/17 如何正确关闭线程池shutdown 和 shutdownNow 的区别?.md.html">17 如何正确关闭线程池shutdown 和 shutdownNow 的区别?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/18 线程池实现“线程复用”的原理?.md.html">18 线程池实现“线程复用”的原理?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/19 你知道哪几种锁?分别有什么特点?.md.html">19 你知道哪几种锁?分别有什么特点?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/20 悲观锁和乐观锁的本质是什么?.md.html">20 悲观锁和乐观锁的本质是什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/21 如何看到 synchronized 背后的“monitor 锁”?.md.html">21 如何看到 synchronized 背后的“monitor 锁”?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/22 synchronized 和 Lock 孰优孰劣,如何选择?.md.html">22 synchronized 和 Lock 孰优孰劣,如何选择?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/23 Lock 有哪几个常用方法?分别有什么用?.md.html">23 Lock 有哪几个常用方法?分别有什么用?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/24 讲一讲公平锁和非公平锁,为什么要“非公平”?.md.html">24 讲一讲公平锁和非公平锁,为什么要“非公平”?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/25 读写锁 ReadWriteLock 获取锁有哪些规则?.md.html">25 读写锁 ReadWriteLock 获取锁有哪些规则?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/26 读锁应该插队吗?什么是读写锁的升降级?.md.html">26 读锁应该插队吗?什么是读写锁的升降级?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/27 什么是自旋锁?自旋的好处和后果是什么呢?.md.html">27 什么是自旋锁?自旋的好处和后果是什么呢?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/28 JVM 对锁进行了哪些优化?.md.html">28 JVM 对锁进行了哪些优化?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/29 HashMap 为什么是线程不安全的?.md.html">29 HashMap 为什么是线程不安全的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/30 ConcurrentHashMap 在 Java7 和 8 有何不同?.md.html">30 ConcurrentHashMap 在 Java7 和 8 有何不同?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/31 为什么 Map 桶中超过 8 个才转为红黑树?.md.html">31 为什么 Map 桶中超过 8 个才转为红黑树?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/32 同样是线程安全ConcurrentHashMap 和 Hashtable 的区别.md.html">32 同样是线程安全ConcurrentHashMap 和 Hashtable 的区别.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/33 CopyOnWriteArrayList 有什么特点?.md.html">33 CopyOnWriteArrayList 有什么特点?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/34 什么是阻塞队列?.md.html">34 什么是阻塞队列?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/35 阻塞队列包含哪些常用的方法add、offer、put 等方法的区别?.md.html">35 阻塞队列包含哪些常用的方法add、offer、put 等方法的区别?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/36 有哪几种常见的阻塞队列?.md.html">36 有哪几种常见的阻塞队列?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/37 阻塞和非阻塞队列的并发安全原理是什么?.md.html">37 阻塞和非阻塞队列的并发安全原理是什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/38 如何选择适合自己的阻塞队列?.md.html">38 如何选择适合自己的阻塞队列?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/39 原子类是如何利用 CAS 保证线程安全的?.md.html">39 原子类是如何利用 CAS 保证线程安全的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/40 AtomicInteger 在高并发下性能不好,如何解决?为什么?.md.html">40 AtomicInteger 在高并发下性能不好,如何解决?为什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/41 原子类和 volatile 有什么异同?.md.html">41 原子类和 volatile 有什么异同?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/42 AtomicInteger 和 synchronized 的异同点?.md.html">42 AtomicInteger 和 synchronized 的异同点?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/43 Java 8 中 Adder 和 Accumulator 有什么区别?.md.html">43 Java 8 中 Adder 和 Accumulator 有什么区别?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/44 ThreadLocal 适合用在哪些实际生产的场景中?.md.html">44 ThreadLocal 适合用在哪些实际生产的场景中?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/45 ThreadLocal 是用来解决共享资源的多线程访问的问题吗?.md.html">45 ThreadLocal 是用来解决共享资源的多线程访问的问题吗?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/46 多个 ThreadLocal 在 Thread 中的 threadlocals 里是怎么存储的?.md.html">46 多个 ThreadLocal 在 Thread 中的 threadlocals 里是怎么存储的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/47 内存泄漏——为何每次用完 ThreadLocal 都要调用 remove().md.html">47 内存泄漏——为何每次用完 ThreadLocal 都要调用 remove().md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/48 Callable 和 Runnable 的不同?.md.html">48 Callable 和 Runnable 的不同?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/49 Future 的主要功能是什么?.md.html">49 Future 的主要功能是什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/50 使用 Future 有哪些注意点Future 产生新的线程了吗?.md.html">50 使用 Future 有哪些注意点Future 产生新的线程了吗?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/51 如何利用 CompletableFuture 实现“旅游平台”问题?.md.html">51 如何利用 CompletableFuture 实现“旅游平台”问题?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/52 信号量能被 FixedThreadPool 替代吗?.md.html">52 信号量能被 FixedThreadPool 替代吗?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/53 CountDownLatch 是如何安排线程执行顺序的?.md.html">53 CountDownLatch 是如何安排线程执行顺序的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/54 CyclicBarrier 和 CountdownLatch 有什么异同?.md.html">54 CyclicBarrier 和 CountdownLatch 有什么异同?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/55 Condition、object.wait() 和 notify() 的关系?.md.html">55 Condition、object.wait() 和 notify() 的关系?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/56 讲一讲什么是 Java 内存模型?.md.html">56 讲一讲什么是 Java 内存模型?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/57 什么是指令重排序?为什么要重排序?.md.html">57 什么是指令重排序?为什么要重排序?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/58 Java 中的原子操作有哪些注意事项?.md.html">58 Java 中的原子操作有哪些注意事项?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/59 什么是“内存可见性”问题?.md.html">59 什么是“内存可见性”问题?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/60 主内存和工作内存的关系?.md.html">60 主内存和工作内存的关系?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/61 什么是 happens-before 规则?.md.html">61 什么是 happens-before 规则?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/62 volatile 的作用是什么?与 synchronized 有什么异同?.md.html">62 volatile 的作用是什么?与 synchronized 有什么异同?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/63 单例模式的双重检查锁模式为什么必须加 volatile.md.html">63 单例模式的双重检查锁模式为什么必须加 volatile.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/64 你知道什么是 CAS 吗?.md.html">64 你知道什么是 CAS 吗?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/65 CAS 和乐观锁的关系,什么时候会用到 CAS.md.html">65 CAS 和乐观锁的关系,什么时候会用到 CAS.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/66 CAS 有什么缺点?.md.html">66 CAS 有什么缺点?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/67 如何写一个必然死锁的例子?.md.html">67 如何写一个必然死锁的例子?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/68 发生死锁必须满足哪 4 个条件?.md.html">68 发生死锁必须满足哪 4 个条件?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/69 如何用命令行和代码定位死锁?.md.html">69 如何用命令行和代码定位死锁?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/70 有哪些解决死锁问题的策略?.md.html">70 有哪些解决死锁问题的策略?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/71 讲一讲经典的哲学家就餐问题.md.html">71 讲一讲经典的哲学家就餐问题.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/72 final 的三种用法是什么?.md.html">72 final 的三种用法是什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/73 为什么加了 final 却依然无法拥有“不变性”?.md.html">73 为什么加了 final 却依然无法拥有“不变性”?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/74 为什么 String 被设计为是不可变的?.md.html">74 为什么 String 被设计为是不可变的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/75 为什么需要 AQSAQS 的作用和重要性是什么?.md.html">75 为什么需要 AQSAQS 的作用和重要性是什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/76 AQS 的内部原理是什么样的?.md.html">76 AQS 的内部原理是什么样的?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/77 AQS 在 CountDownLatch 等类中的应用原理是什么?.md.html">77 AQS 在 CountDownLatch 等类中的应用原理是什么?.md.html</a>
</li>
<li>
<a href="/专栏/Java 并发编程 78 讲-完/78 一份独家的 Java 并发工具图谱.md.html">78 一份独家的 Java 并发工具图谱.md.html</a>
</li>
</ul>
</div>
</div>
<div class="sidebar-toggle" onclick="sidebar_toggle()" onmouseover="add_inner()" onmouseleave="remove_inner()">
<div class="sidebar-toggle-inner"></div>
</div>
<script>
function add_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.add('show')
}
function remove_inner() {
let inner = document.querySelector('.sidebar-toggle-inner')
inner.classList.remove('show')
}
function sidebar_toggle() {
let sidebar_toggle = document.querySelector('.sidebar-toggle')
let sidebar = document.querySelector('.book-sidebar')
let content = document.querySelector('.off-canvas-content')
if (sidebar_toggle.classList.contains('extend')) { // show
sidebar_toggle.classList.remove('extend')
sidebar.classList.remove('hide')
content.classList.remove('extend')
} else { // hide
sidebar_toggle.classList.add('extend')
sidebar.classList.add('hide')
content.classList.add('extend')
}
}
function open_sidebar() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.add('show')
overlay.classList.add('show')
}
function hide_canvas() {
let sidebar = document.querySelector('.book-sidebar')
let overlay = document.querySelector('.off-canvas-overlay')
sidebar.classList.remove('show')
overlay.classList.remove('show')
}
</script>
<div class="off-canvas-content">
<div class="columns">
<div class="column col-12 col-lg-12">
<div class="book-navbar">
<!-- For Responsive Layout -->
<header class="navbar">
<section class="navbar-section">
<a onclick="open_sidebar()">
<i class="icon icon-menu"></i>
</a>
</section>
</header>
</div>
<div class="book-content" style="max-width: 960px; margin: 0 auto;
overflow-x: auto;
overflow-y: hidden;">
<div class="book-post">
<p id="tip" align="center"></p>
<div><h1>12 有哪 6 种常见的线程池?什么是 Java8 的 ForkJoinPool</h1>
<p>在本课时我们主要学习常见的 6 种线程池,并详细讲解 Java 8 新增的 ForkJoinPool 线程池6 种常见的线程池如下。</p>
<ul>
<li>FixedThreadPool</li>
<li>CachedThreadPool</li>
<li>ScheduledThreadPool</li>
<li>SingleThreadExecutor</li>
<li>SingleThreadScheduledExecutor</li>
<li>ForkJoinPool</li>
</ul>
<h3>FixedThreadPool</h3>
<p>第一种线程池叫作 FixedThreadPool它的核心线程数和最大线程数是一样的所以可以把它看作是固定线程数的线程池它的特点是线程池中的线程数除了初始阶段需要从 0 开始增加外,之后的线程数量就是固定的,就算任务数超过线程数,线程池也不会再创建更多的线程来处理任务,而是会把超出线程处理能力的任务放到任务队列中进行等待。而且就算任务队列满了,到了本该继续增加线程数的时候,由于它的最大线程数和核心线程数是一样的,所以也无法再增加新的线程了。</p>
<p><img src="assets/CgotOV3kzoeARRniAAAwS8Pup4A734.png" alt="img" /></p>
<p>如图所示,线程池有 t0~t910 个线程,它们会不停地执行任务,如果某个线程任务执行完了,就会从任务队列中获取新的任务继续执行,期间线程数量不会增加也不会减少,始终保持在 10 个。</p>
<h3>CachedThreadPool</h3>
<p>第二种线程池是 CachedThreadPool可以称作可缓存线程池它的特点在于线程数是几乎可以无限增加的实际最大可以达到 Integer.MAX_VALUE为 2^31-1这个数非常大所以基本不可能达到而当线程闲置时还可以对线程进行回收。也就是说该线程池的线程数量不是固定不变的当然它也有一个用于存储提交任务的队列但这个队列是 SynchronousQueue队列的容量为0实际不存储任何任务它只负责对任务进行中转和传递所以效率比较高。</p>
<p>当我们提交一个任务后,线程池会判断已创建的线程中是否有空闲线程,如果有空闲线程则将任务直接指派给空闲线程,如果没有空闲线程,则新建线程去执行任务,这样就做到了动态地新增线程。让我们举个例子,如下方代码所示。</p>
<pre><code>ExecutorService service = Executors.newCachedThreadPool();
for (int i = 0; i &lt; 1000; i++) {
service.execute(new Task() {
});
}
</code></pre>
<p>使用 for 循环提交 1000 个任务给 CachedThreadPool假设这些任务处理的时间非常长会发生什么情况呢因为 for 循环提交任务的操作是非常快的,但执行任务却比较耗时,就可能导致 1000 个任务都提交完了但第一个任务还没有被执行完,所以此时 CachedThreadPool 就可以动态的伸缩线程数量,随着任务的提交,不停地创建 1000 个线程来执行任务,而当任务执行完之后,假设没有新的任务了,那么大量的闲置线程又会造成内存资源的浪费,这时线程池就会检测线程在 60 秒内有没有可执行任务,如果没有就会被销毁,最终线程数量会减为 0。</p>
<h3>ScheduledThreadPool</h3>
<p>第三个线程池是 ScheduledThreadPool它支持定时或周期性执行任务。比如每隔 10 秒钟执行一次任务,而实现这种功能的方法主要有 3 种,如代码所示:</p>
<pre><code>ScheduledExecutorService service = Executors.newScheduledThreadPool(10);
service.schedule(new Task(), 10, TimeUnit.SECONDS);
service.scheduleAtFixedRate(new Task(), 10, 10, TimeUnit.SECONDS);
service.scheduleWithFixedDelay(new Task(), 10, 10, TimeUnit.SECONDS);
</code></pre>
<p>那么这 3 种方法有什么区别呢?</p>
<ul>
<li>第一种方法 schedule 比较简单,表示延迟指定时间后执行一次任务,如果代码中设置参数为 10 秒,也就是 10 秒后执行一次任务后就结束。</li>
<li>第二种方法 scheduleAtFixedRate 表示以固定的频率执行任务,它的第二个参数 initialDelay 表示第一次延时时间,第三个参数 period 表示周期,也就是第一次延时后每次延时多长时间执行一次任务。</li>
<li>第三种方法 scheduleWithFixedDelay 与第二种方法类似,也是周期执行任务,区别在于对周期的定义,之前的 scheduleAtFixedRate 是以任务开始的时间为时间起点开始计时,时间到就开始执行第二次任务,而不管任务需要花多久执行;而 scheduleWithFixedDelay 方法以任务结束的时间为下一次循环的时间起点开始计时。</li>
</ul>
<p>举个例子假设某个同学正在熬夜写代码需要喝咖啡来提神假设每次喝咖啡都需要花10分钟的时间如果此时采用第2种方法 scheduleAtFixedRate时间间隔设置为 1 小时,那么他将会在每个整点喝一杯咖啡,以下是时间表:</p>
<ul>
<li>00:00: 开始喝咖啡</li>
<li>00:10: 喝完了</li>
<li>01:00: 开始喝咖啡</li>
<li>01:10: 喝完了</li>
<li>02:00: 开始喝咖啡</li>
<li>02:10: 喝完了</li>
</ul>
<p>但是假设他采用第3种方法 scheduleWithFixedDelay时间间隔同样设置为 1 小时那么由于每次喝咖啡需要10分钟而 scheduleWithFixedDelay 是以任务完成的时间为时间起点开始计时的所以第2次喝咖啡的时间将会在1:10而不是1:00整以下是时间表</p>
<ul>
<li>00:00: 开始喝咖啡</li>
<li>00:10: 喝完了</li>
<li>01:10: 开始喝咖啡</li>
<li>01:20: 喝完了</li>
<li>02:20: 开始喝咖啡</li>
<li>02:30: 喝完了</li>
</ul>
<h3>SingleThreadExecutor</h3>
<p>第四种线程池是 SingleThreadExecutor它会使用唯一的线程去执行任务原理和 FixedThreadPool 是一样的,只不过这里线程只有一个,如果线程在执行任务的过程中发生异常,线程池也会重新创建一个线程来执行后续的任务。这种线程池由于只有一个线程,所以非常适合用于所有任务都需要按被提交的顺序依次执行的场景,而前几种线程池不一定能够保障任务的执行顺序等于被提交的顺序,因为它们是多线程并行执行的。</p>
<h3>SingleThreadScheduledExecutor</h3>
<p>第五个线程池是 SingleThreadScheduledExecutor它实际和第三种 ScheduledThreadPool 线程池非常相似,它只是 ScheduledThreadPool 的一个特例,内部只有一个线程,如源码所示:</p>
<pre><code>new ScheduledThreadPoolExecutor(1)
</code></pre>
<p>它只是将 ScheduledThreadPool 的核心线程数设置为了 1。</p>
<p><img src="assets/CgoB5l3kzomAckv5AAAxf6FCPco696.png" alt="img" /></p>
<p>总结上述的五种线程池,我们以核心线程数、最大线程数,以及线程存活时间三个维度进行对比,如表格所示。</p>
<p>第一个线程池 FixedThreadPool它的核心线程数和最大线程数都是由构造函数直接传参的而且它们的值是相等的所以最大线程数不会超过核心线程数也就不需要考虑线程回收的问题如果没有任务可执行线程仍会在线程池中存活并等待任务。</p>
<p>第二个线程池 CachedThreadPool 的核心线程数是 0而它的最大线程数是 Integer 的最大值线程数一般是达不到这么多的所以如果任务特别多且耗时的话CachedThreadPool 就会创建非常多的线程来应对。</p>
<p>同理,你可以课后按照同样的方法来分析后面三种线程池的参数,来加深对知识的理解。</p>
<h3>ForkJoinPool</h3>
<p><img src="assets/CgotOV3kzomAflZxAAB99x9-MzI241.png" alt="img" /></p>
<p>最后,我们来看下第六种线程池 ForkJoinPool这个线程池是在 JDK 7 加入的,它的名字 ForkJoin 也描述了它的执行机制,主要用法和之前的线程池是相同的,也是把任务交给线程池去执行,线程池中也有任务队列来存放任务。但是 ForkJoinPool 线程池和之前的线程池有两点非常大的不同之处。第一点它非常适合执行可以产生子任务的任务。</p>
<p>如图所示,我们有一个 Task这个 Task 可以产生三个子任务,三个子任务并行执行完毕后将结果汇总给 Result比如说主任务需要执行非常繁重的计算任务我们就可以把计算拆分成三个部分这三个部分是互不影响相互独立的这样就可以利用 CPU 的多核优势,并行计算,然后将结果进行汇总。这里面主要涉及两个步骤,第一步是拆分也就是 Fork第二步是汇总也就是 Join到这里你应该已经了解到 ForkJoinPool 线程池名字的由来了。</p>
<p>举个例子,比如面试中经常考到的菲波那切数列,你一定非常熟悉,这个数列的特点就是后一项的结果等于前两项的和,第 0 项是 0第 1 项是 1那么第 2 项就是 0+1=1以此类推。我们在写代码时应该首选效率更高的迭代形式或者更高级的乘方或者矩阵公式法等写法不过假设我们写成了最初版本的递归形式伪代码如下所示</p>
<pre><code>if (n &lt;= 1) {
return n;
} else {
Fib f1 = new Fib(n - 1);
Fib f2 = new Fib(n - 2);
f1.solve();
f2.solve();
number = f1.number + f2.number;
return number;
}
</code></pre>
<p>你可以看到如果 n&lt;=1 则直接返回 n如果 n&gt;1 ,先将前一项 f1 的值计算出来,然后往前推两项求出 f2 的值,然后将两值相加得到结果,所以我们看到在求和运算中产生了两个子任务。计算 f(4) 的流程如下图所示。</p>
<p><img src="assets/CgoB5l3kzoqAZgXiAACbX2rJCR4889.png" alt="img" /></p>
<p>在计算 f(4) 时需要首先计算出 f(2) 和 f(3),而同理,计算 f(3) 时又需要计算 f(1) 和 f(2),以此类推。
<img src="assets/CgotOV3kzoqAUlPyAADYOKK1PgM516.png" alt="img" /></p>
<p>这是典型的递归问题,对应到我们的 ForkJoin 模式,如图所示,子任务同样会产生子子任务,最后再逐层汇总,得到最终的结果。</p>
<p>ForkJoinPool 线程池有多种方法可以实现任务的分裂和汇总,其中一种用法如下方代码所示。</p>
<pre><code>class Fibonacci extends RecursiveTask&lt;Integer&gt; {
int n;
public Fibonacci(int n) {
this.n = n;
}
@Override
public Integer compute() {
if (n &lt;= 1) {
return n;
}
Fibonacci f1 = new Fibonacci(n - 1);
f1.fork();
Fibonacci f2 = new Fibonacci(n - 2);
f2.fork();
return f1.join() + f2.join();
}
}
</code></pre>
<p>我们看到它首先继承了 RecursiveTaskRecursiveTask 类是对ForkJoinTask 的一个简单的包装,这时我们重写 compute() 方法,当 n&lt;=1 时直接返回,当 n&gt;1 就创建递归任务,也就是 f1 和 f2然后我们用 fork() 方法分裂任务并分别执行,最后在 return 的时候,使用 join() 方法把结果汇总,这样就实现了任务的分裂和汇总。</p>
<pre><code>public static void main(String[] args) throws ExecutionException, InterruptedException {
ForkJoinPool forkJoinPool = new ForkJoinPool();
for (int i = 0; i &lt; 10; i++) {
ForkJoinTask task = forkJoinPool.submit(new Fibonacci(i));
System.out.println(task.get());
}
}
</code></pre>
<p>上面这段代码将会打印出斐波那契数列的第 0 到 9 项的值:</p>
<pre><code>0
1
1
2
3
5
8
13
21
34
</code></pre>
<p>这就是 ForkJoinPool 线程池和其他线程池的第一点不同。</p>
<p>我们来看第二点不同,第二点不同之处在于内部结构,之前的线程池所有的线程共用一个队列,但 ForkJoinPool 线程池中每个线程都有自己独立的任务队列,如图所示。</p>
<p><img src="assets/CgoB5l3kzouAdfLfAAARK97hw4g233.png" alt="img" /></p>
<p>ForkJoinPool 线程池内部除了有一个共用的任务队列之外,每个线程还有一个对应的双端队列 deque这时一旦线程中的任务被 Fork 分裂了,分裂出来的子任务放入线程自己的 deque 里,而不是放入公共的任务队列中。如果此时有三个子任务放入线程 t1 的 deque 队列中,对于线程 t1 而言获取任务的成本就降低了,可以直接在自己的任务队列中获取而不必去公共队列中争抢也不会发生阻塞(除了后面会讲到的 steal 情况外),减少了线程间的竞争和切换,是非常高效的。</p>
<p><img src="assets/CgotOV3nFTCAKmNtAAES7A18i8M873.png" alt="img" /></p>
<p>我们再考虑一种情况,此时线程有多个,而线程 t1 的任务特别繁重,分裂了数十个子任务,但是 t0 此时却无事可做,它自己的 deque 队列为空这时为了提高效率t0 就会想办法帮助 t1 执行任务这就是“work-stealing”的含义。</p>
<p>双端队列 deque 中,线程 t1 获取任务的逻辑是后进先出也就是LIFOLast In Frist Out而线程 t0 在“steal”偷线程 t1 的 deque 中的任务的逻辑是先进先出也就是FIFOFast In Frist Out如图所示图中很好的描述了两个线程使用双端队列分别获取任务的情景。你可以看到使用 “work-stealing” 算法和双端队列很好地平衡了各线程的负载。</p>
<p><img src="assets/CgoB5l3nFSOAFOkbAABvJKvhTKk938.png" alt="img" /></p>
<p>最后,我们用一张全景图来描述 ForkJoinPool 线程池的内部结构,你可以看到 ForkJoinPool 线程池和其他线程池很多地方都是一样的但重点区别在于它每个线程都有一个自己的双端队列来存储分裂出来的子任务。ForkJoinPool 非常适合用于递归的场景,例如树的遍历、最优路径搜索等场景。</p>
</div>
</div>
<div>
<div style="float: left">
<a href="/专栏/Java 并发编程 78 讲-完/11 线程池有哪 4 种拒绝策略?.md.html">上一页</a>
</div>
<div style="float: right">
<a href="/专栏/Java 并发编程 78 讲-完/13 线程池常用的阻塞队列有哪些?.md.html">下一页</a>
</div>
</div>
</div>
</div>
</div>
</div>
<a class="off-canvas-overlay" onclick="hide_canvas()"></a>
</div>
<script defer src="https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="sha512-Gi7xpJR8tSkrpF7aordPZQlW2DLtzUlZcumS8dMQjwDHEnw9I7ZLyiOj/6tZStRBGtGgN6ceN6cMH8z7etPGlw==" data-cf-beacon='{"rayId":"70997092efcd3d60","version":"2021.12.0","r":1,"token":"1f5d475227ce4f0089a7cff1ab17c0f5","si":100}' crossorigin="anonymous"></script>
</body>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NPSEEVD756"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-NPSEEVD756');
var path = window.location.pathname
var cookie = getCookie("lastPath");
console.log(path)
if (path.replace("/", "") === "") {
if (cookie.replace("/", "") !== "") {
console.log(cookie)
document.getElementById("tip").innerHTML = "<a href='" + cookie + "'>跳转到上次进度</a>"
}
} else {
setCookie("lastPath", path)
}
function setCookie(cname, cvalue) {
var d = new Date();
d.setTime(d.getTime() + (180 * 24 * 60 * 60 * 1000));
var expires = "expires=" + d.toGMTString();
document.cookie = cname + "=" + cvalue + "; " + expires + ";path = /";
}
function getCookie(cname) {
var name = cname + "=";
var ca = document.cookie.split(';');
for (var i = 0; i < ca.length; i++) {
var c = ca[i].trim();
if (c.indexOf(name) === 0) return c.substring(name.length, c.length);
}
return "";
}
</script>
</html>