new-api/relay/relay-image.go
1808837298@qq.com c1040afed9 fix: typo
2024-05-31 15:10:01 +08:00

248 lines
8.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package relay
import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"github.com/gin-gonic/gin"
"io"
"net/http"
"one-api/common"
"one-api/constant"
"one-api/dto"
"one-api/model"
relaycommon "one-api/relay/common"
relayconstant "one-api/relay/constant"
"one-api/service"
"strings"
"time"
)
func RelayImageHelper(c *gin.Context, relayMode int) *dto.OpenAIErrorWithStatusCode {
tokenId := c.GetInt("token_id")
channelType := c.GetInt("channel")
channelId := c.GetInt("channel_id")
userId := c.GetInt("id")
group := c.GetString("group")
startTime := time.Now()
var imageRequest dto.ImageRequest
err := common.UnmarshalBodyReusable(c, &imageRequest)
if err != nil {
return service.OpenAIErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
}
if imageRequest.Model == "" {
imageRequest.Model = "dall-e-3"
}
if imageRequest.Size == "" {
imageRequest.Size = "1024x1024"
}
if imageRequest.N == 0 {
imageRequest.N = 1
}
// Prompt validation
if imageRequest.Prompt == "" {
return service.OpenAIErrorWrapper(errors.New("prompt is required"), "required_field_missing", http.StatusBadRequest)
}
if constant.ShouldCheckPromptSensitive() {
err = service.CheckSensitiveInput(imageRequest.Prompt)
if err != nil {
return service.OpenAIErrorWrapper(err, "sensitive_words_detected", http.StatusBadRequest)
}
}
if strings.Contains(imageRequest.Size, "×") {
return service.OpenAIErrorWrapper(errors.New("size an unexpected error occurred in the parameter, please use 'x' instead of the multiplication sign '×'"), "invalid_field_value", http.StatusBadRequest)
}
// Not "256x256", "512x512", or "1024x1024"
if imageRequest.Model == "dall-e-2" || imageRequest.Model == "dall-e" {
if imageRequest.Size != "" && imageRequest.Size != "256x256" && imageRequest.Size != "512x512" && imageRequest.Size != "1024x1024" {
return service.OpenAIErrorWrapper(errors.New("size must be one of 256x256, 512x512, or 1024x1024, dall-e-3 1024x1792 or 1792x1024"), "invalid_field_value", http.StatusBadRequest)
}
} else if imageRequest.Model == "dall-e-3" {
if imageRequest.Size != "" && imageRequest.Size != "1024x1024" && imageRequest.Size != "1024x1792" && imageRequest.Size != "1792x1024" {
return service.OpenAIErrorWrapper(errors.New("size must be one of 256x256, 512x512, or 1024x1024, dall-e-3 1024x1792 or 1792x1024"), "invalid_field_value", http.StatusBadRequest)
}
if imageRequest.N != 1 {
return service.OpenAIErrorWrapper(errors.New("n must be 1"), "invalid_field_value", http.StatusBadRequest)
}
}
// N should between 1 and 10
if imageRequest.N != 0 && (imageRequest.N < 1 || imageRequest.N > 10) {
return service.OpenAIErrorWrapper(errors.New("n must be between 1 and 10"), "invalid_field_value", http.StatusBadRequest)
}
// map model name
modelMapping := c.GetString("model_mapping")
isModelMapped := false
if modelMapping != "" {
modelMap := make(map[string]string)
err := json.Unmarshal([]byte(modelMapping), &modelMap)
if err != nil {
return service.OpenAIErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
}
if modelMap[imageRequest.Model] != "" {
imageRequest.Model = modelMap[imageRequest.Model]
isModelMapped = true
}
}
baseURL := common.ChannelBaseURLs[channelType]
requestURL := c.Request.URL.String()
if c.GetString("base_url") != "" {
baseURL = c.GetString("base_url")
}
fullRequestURL := relaycommon.GetFullRequestURL(baseURL, requestURL, channelType)
if channelType == common.ChannelTypeAzure && relayMode == relayconstant.RelayModeImagesGenerations {
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
apiVersion := relaycommon.GetAPIVersion(c)
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2023-06-01-preview
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", baseURL, imageRequest.Model, apiVersion)
}
var requestBody io.Reader
if isModelMapped || channelType == common.ChannelTypeAzure { // make Azure channel request body
jsonStr, err := json.Marshal(imageRequest)
if err != nil {
return service.OpenAIErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
}
requestBody = bytes.NewBuffer(jsonStr)
} else {
requestBody = c.Request.Body
}
modelPrice, success := common.GetModelPrice(imageRequest.Model, true)
if !success {
modelRatio := common.GetModelRatio(imageRequest.Model)
// modelRatio 16 = modelPrice $0.04
// per 1 modelRatio = $0.04 / 16
modelPrice = 0.0025 * modelRatio
}
groupRatio := common.GetGroupRatio(group)
userQuota, err := model.CacheGetUserQuota(userId)
sizeRatio := 1.0
// Size
if imageRequest.Size == "256x256" {
sizeRatio = 0.4
} else if imageRequest.Size == "512x512" {
sizeRatio = 0.45
} else if imageRequest.Size == "1024x1024" {
sizeRatio = 1
} else if imageRequest.Size == "1024x1792" || imageRequest.Size == "1792x1024" {
sizeRatio = 2
}
qualityRatio := 1.0
if imageRequest.Model == "dall-e-3" && imageRequest.Quality == "hd" {
qualityRatio = 2.0
if imageRequest.Size == "1024x1792" || imageRequest.Size == "1792x1024" {
qualityRatio = 1.5
}
}
quota := int(modelPrice*groupRatio*common.QuotaPerUnit*sizeRatio*qualityRatio) * imageRequest.N
if userQuota-quota < 0 {
return service.OpenAIErrorWrapper(errors.New("user quota is not enough"), "insufficient_user_quota", http.StatusForbidden)
}
req, err := http.NewRequest(c.Request.Method, fullRequestURL, requestBody)
if err != nil {
return service.OpenAIErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
}
token := c.Request.Header.Get("Authorization")
if channelType == common.ChannelTypeAzure { // Azure authentication
token = strings.TrimPrefix(token, "Bearer ")
req.Header.Set("api-key", token)
} else {
req.Header.Set("Authorization", token)
}
req.Header.Set("Content-Type", c.Request.Header.Get("Content-Type"))
req.Header.Set("Accept", c.Request.Header.Get("Accept"))
resp, err := service.GetHttpClient().Do(req)
if err != nil {
return service.OpenAIErrorWrapper(err, "do_request_failed", http.StatusInternalServerError)
}
err = req.Body.Close()
if err != nil {
return service.OpenAIErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
}
err = c.Request.Body.Close()
if err != nil {
return service.OpenAIErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
}
if resp.StatusCode != http.StatusOK {
return relaycommon.RelayErrorHandler(resp)
}
var textResponse dto.ImageResponse
defer func(ctx context.Context) {
useTimeSeconds := time.Now().Unix() - startTime.Unix()
if resp.StatusCode != http.StatusOK {
return
}
err := model.PostConsumeTokenQuota(tokenId, userQuota, quota, 0, true)
if err != nil {
common.SysError("error consuming token remain quota: " + err.Error())
}
err = model.CacheUpdateUserQuota(userId)
if err != nil {
common.SysError("error update user quota cache: " + err.Error())
}
if quota != 0 {
tokenName := c.GetString("token_name")
quality := "normal"
if imageRequest.Quality == "hd" {
quality = "hd"
}
logContent := fmt.Sprintf("模型价格 %.2f,分组倍率 %.2f, 大小 %s, 品质 %s", modelPrice, groupRatio, imageRequest.Size, quality)
other := make(map[string]interface{})
other["model_price"] = modelPrice
other["group_ratio"] = groupRatio
model.RecordConsumeLog(ctx, userId, channelId, 0, 0, imageRequest.Model, tokenName, quota, logContent, tokenId, userQuota, int(useTimeSeconds), false, other)
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
channelId := c.GetInt("channel_id")
model.UpdateChannelUsedQuota(channelId, quota)
}
}(c.Request.Context())
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return service.OpenAIErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError)
}
err = resp.Body.Close()
if err != nil {
return service.OpenAIErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
}
err = json.Unmarshal(responseBody, &textResponse)
if err != nil {
return service.OpenAIErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
}
resp.Body = io.NopCloser(bytes.NewBuffer(responseBody))
for k, v := range resp.Header {
c.Writer.Header().Set(k, v[0])
}
c.Writer.WriteHeader(resp.StatusCode)
_, err = io.Copy(c.Writer, resp.Body)
if err != nil {
return service.OpenAIErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError)
}
err = resp.Body.Close()
if err != nil {
return service.OpenAIErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
}
return nil
}