mirror of
https://github.com/songquanpeng/one-api.git
synced 2025-11-10 10:33:41 +08:00
增加vertex embedding的支持,修改vertex的模型adapter匹配逻辑
This commit is contained in:
107
relay/adaptor/vertexai/embedding/adapter.go
Normal file
107
relay/adaptor/vertexai/embedding/adapter.go
Normal file
@@ -0,0 +1,107 @@
|
||||
package vertexai
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"strings"
|
||||
|
||||
"github.com/songquanpeng/one-api/relay/adaptor/gemini"
|
||||
"github.com/songquanpeng/one-api/relay/adaptor/openai"
|
||||
model2 "github.com/songquanpeng/one-api/relay/adaptor/vertexai/model"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
"github.com/pkg/errors"
|
||||
|
||||
"github.com/songquanpeng/one-api/relay/meta"
|
||||
"github.com/songquanpeng/one-api/relay/model"
|
||||
)
|
||||
|
||||
var ModelList = []string{
|
||||
"textembedding-gecko-multilingual@001", "text-multilingual-embedding-002",
|
||||
}
|
||||
|
||||
type Adaptor struct {
|
||||
model string
|
||||
task EmbeddingTaskType
|
||||
}
|
||||
|
||||
var _ model2.InnerAIAdapter = (*Adaptor)(nil)
|
||||
|
||||
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
|
||||
if request == nil {
|
||||
return nil, errors.New("request is nil")
|
||||
}
|
||||
inputs := request.ParseInput()
|
||||
if len(inputs) == 0 {
|
||||
return nil, errors.New("request is nil")
|
||||
}
|
||||
parts := strings.Split(request.Model, "|")
|
||||
if len(parts) >= 2 {
|
||||
a.task = EmbeddingTaskType(parts[1])
|
||||
} else {
|
||||
a.task = EmbeddingTaskTypeSemanticSimilarity
|
||||
}
|
||||
a.model = parts[0]
|
||||
instances := make([]EmbeddingInstance, len(inputs))
|
||||
for i, input := range inputs {
|
||||
instances[i] = EmbeddingInstance{
|
||||
Content: input,
|
||||
TaskType: a.task,
|
||||
}
|
||||
}
|
||||
|
||||
embeddingRequest := EmbeddingRequest{
|
||||
Instances: instances,
|
||||
Parameters: EmbeddingParams{
|
||||
OutputDimensionality: request.Dimensions,
|
||||
},
|
||||
}
|
||||
|
||||
return embeddingRequest, nil
|
||||
}
|
||||
|
||||
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
|
||||
err, usage = EmbeddingHandler(c, a.model, resp)
|
||||
return
|
||||
}
|
||||
|
||||
func EmbeddingHandler(c *gin.Context, modelName string, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
|
||||
var vertexEmbeddingResponse EmbeddingResponse
|
||||
responseBody, err := io.ReadAll(resp.Body)
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
|
||||
}
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
|
||||
}
|
||||
err = resp.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
|
||||
}
|
||||
err = json.Unmarshal(responseBody, &vertexEmbeddingResponse)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
|
||||
}
|
||||
|
||||
openaiResp := &openai.EmbeddingResponse{
|
||||
Model: modelName,
|
||||
Data: make([]openai.EmbeddingResponseItem, 0, len(vertexEmbeddingResponse.Predictions)),
|
||||
Usage: model.Usage{
|
||||
TotalTokens: 0,
|
||||
},
|
||||
}
|
||||
|
||||
for i, pred := range vertexEmbeddingResponse.Predictions {
|
||||
openaiResp.Data = append(openaiResp.Data, openai.EmbeddingResponseItem{
|
||||
Index: i,
|
||||
Embedding: pred.Embeddings.Values,
|
||||
})
|
||||
}
|
||||
|
||||
for _, pred := range vertexEmbeddingResponse.Predictions {
|
||||
openaiResp.Usage.TotalTokens += pred.Embeddings.Statistics.TokenCount
|
||||
}
|
||||
|
||||
return gemini.EmbeddingResponseHandler(c, resp.StatusCode, openaiResp)
|
||||
}
|
||||
45
relay/adaptor/vertexai/embedding/model.go
Normal file
45
relay/adaptor/vertexai/embedding/model.go
Normal file
@@ -0,0 +1,45 @@
|
||||
package vertexai
|
||||
|
||||
type EmbeddingTaskType string
|
||||
|
||||
const (
|
||||
EmbeddingTaskTypeRetrievalQuery EmbeddingTaskType = "RETRIEVAL_QUERY"
|
||||
EmbeddingTaskTypeRetrievalDocument EmbeddingTaskType = "RETRIEVAL_DOCUMENT"
|
||||
EmbeddingTaskTypeSemanticSimilarity EmbeddingTaskType = "SEMANTIC_SIMILARITY"
|
||||
EmbeddingTaskTypeClassification EmbeddingTaskType = "CLASSIFICATION"
|
||||
EmbeddingTaskTypeClustering EmbeddingTaskType = "CLUSTERING"
|
||||
EmbeddingTaskTypeQuestionAnswering EmbeddingTaskType = "QUESTION_ANSWERING"
|
||||
EmbeddingTaskTypeFactVerification EmbeddingTaskType = "FACT_VERIFICATION"
|
||||
EmbeddingTaskTypeCodeRetrievalQuery EmbeddingTaskType = "CODE_RETRIEVAL_QUERY"
|
||||
)
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Instances []EmbeddingInstance `json:"instances"`
|
||||
Parameters EmbeddingParams `json:"parameters"`
|
||||
}
|
||||
|
||||
type EmbeddingInstance struct {
|
||||
Content string `json:"content"`
|
||||
TaskType EmbeddingTaskType `json:"task_type,omitempty"`
|
||||
Title string `json:"title,omitempty"`
|
||||
}
|
||||
|
||||
type EmbeddingParams struct {
|
||||
AutoTruncate bool `json:"autoTruncate,omitempty"`
|
||||
OutputDimensionality int `json:"outputDimensionality,omitempty"`
|
||||
// Texts []string `json:"texts,omitempty"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Predictions []struct {
|
||||
Embeddings EmbeddingData `json:"embeddings"`
|
||||
} `json:"predictions"`
|
||||
}
|
||||
|
||||
type EmbeddingData struct {
|
||||
Statistics struct {
|
||||
Truncated bool `json:"truncated"`
|
||||
TokenCount int `json:"token_count"`
|
||||
} `json:"statistics"`
|
||||
Values []float64 `json:"values"`
|
||||
}
|
||||
Reference in New Issue
Block a user