增加vertex embedding的支持,修改vertex的模型adapter匹配逻辑

This commit is contained in:
RandyZhang
2025-05-10 15:09:05 +08:00
parent 8df4a2670b
commit 209a14c26f
6 changed files with 217 additions and 18 deletions

View File

@@ -0,0 +1,107 @@
package vertexai
import (
"encoding/json"
"io"
"net/http"
"strings"
"github.com/songquanpeng/one-api/relay/adaptor/gemini"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
model2 "github.com/songquanpeng/one-api/relay/adaptor/vertexai/model"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
var ModelList = []string{
"textembedding-gecko-multilingual@001", "text-multilingual-embedding-002",
}
type Adaptor struct {
model string
task EmbeddingTaskType
}
var _ model2.InnerAIAdapter = (*Adaptor)(nil)
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
inputs := request.ParseInput()
if len(inputs) == 0 {
return nil, errors.New("request is nil")
}
parts := strings.Split(request.Model, "|")
if len(parts) >= 2 {
a.task = EmbeddingTaskType(parts[1])
} else {
a.task = EmbeddingTaskTypeSemanticSimilarity
}
a.model = parts[0]
instances := make([]EmbeddingInstance, len(inputs))
for i, input := range inputs {
instances[i] = EmbeddingInstance{
Content: input,
TaskType: a.task,
}
}
embeddingRequest := EmbeddingRequest{
Instances: instances,
Parameters: EmbeddingParams{
OutputDimensionality: request.Dimensions,
},
}
return embeddingRequest, nil
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
err, usage = EmbeddingHandler(c, a.model, resp)
return
}
func EmbeddingHandler(c *gin.Context, modelName string, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var vertexEmbeddingResponse EmbeddingResponse
responseBody, err := io.ReadAll(resp.Body)
if resp.StatusCode != http.StatusOK {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &vertexEmbeddingResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
openaiResp := &openai.EmbeddingResponse{
Model: modelName,
Data: make([]openai.EmbeddingResponseItem, 0, len(vertexEmbeddingResponse.Predictions)),
Usage: model.Usage{
TotalTokens: 0,
},
}
for i, pred := range vertexEmbeddingResponse.Predictions {
openaiResp.Data = append(openaiResp.Data, openai.EmbeddingResponseItem{
Index: i,
Embedding: pred.Embeddings.Values,
})
}
for _, pred := range vertexEmbeddingResponse.Predictions {
openaiResp.Usage.TotalTokens += pred.Embeddings.Statistics.TokenCount
}
return gemini.EmbeddingResponseHandler(c, resp.StatusCode, openaiResp)
}

View File

@@ -0,0 +1,45 @@
package vertexai
type EmbeddingTaskType string
const (
EmbeddingTaskTypeRetrievalQuery EmbeddingTaskType = "RETRIEVAL_QUERY"
EmbeddingTaskTypeRetrievalDocument EmbeddingTaskType = "RETRIEVAL_DOCUMENT"
EmbeddingTaskTypeSemanticSimilarity EmbeddingTaskType = "SEMANTIC_SIMILARITY"
EmbeddingTaskTypeClassification EmbeddingTaskType = "CLASSIFICATION"
EmbeddingTaskTypeClustering EmbeddingTaskType = "CLUSTERING"
EmbeddingTaskTypeQuestionAnswering EmbeddingTaskType = "QUESTION_ANSWERING"
EmbeddingTaskTypeFactVerification EmbeddingTaskType = "FACT_VERIFICATION"
EmbeddingTaskTypeCodeRetrievalQuery EmbeddingTaskType = "CODE_RETRIEVAL_QUERY"
)
type EmbeddingRequest struct {
Instances []EmbeddingInstance `json:"instances"`
Parameters EmbeddingParams `json:"parameters"`
}
type EmbeddingInstance struct {
Content string `json:"content"`
TaskType EmbeddingTaskType `json:"task_type,omitempty"`
Title string `json:"title,omitempty"`
}
type EmbeddingParams struct {
AutoTruncate bool `json:"autoTruncate,omitempty"`
OutputDimensionality int `json:"outputDimensionality,omitempty"`
// Texts []string `json:"texts,omitempty"`
}
type EmbeddingResponse struct {
Predictions []struct {
Embeddings EmbeddingData `json:"embeddings"`
} `json:"predictions"`
}
type EmbeddingData struct {
Statistics struct {
Truncated bool `json:"truncated"`
TokenCount int `json:"token_count"`
} `json:"statistics"`
Values []float64 `json:"values"`
}