Merge branch 'main' into pr/Laisky/25

This commit is contained in:
Laisky.Cai
2025-01-17 07:45:29 +00:00
425 changed files with 30349 additions and 8798 deletions

70
relay/adaptor.go Normal file
View File

@@ -0,0 +1,70 @@
package relay
import (
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/aiproxy"
"github.com/songquanpeng/one-api/relay/adaptor/ali"
"github.com/songquanpeng/one-api/relay/adaptor/anthropic"
"github.com/songquanpeng/one-api/relay/adaptor/aws"
"github.com/songquanpeng/one-api/relay/adaptor/baidu"
"github.com/songquanpeng/one-api/relay/adaptor/cloudflare"
"github.com/songquanpeng/one-api/relay/adaptor/cohere"
"github.com/songquanpeng/one-api/relay/adaptor/coze"
"github.com/songquanpeng/one-api/relay/adaptor/deepl"
"github.com/songquanpeng/one-api/relay/adaptor/gemini"
"github.com/songquanpeng/one-api/relay/adaptor/ollama"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/adaptor/palm"
"github.com/songquanpeng/one-api/relay/adaptor/proxy"
"github.com/songquanpeng/one-api/relay/adaptor/replicate"
"github.com/songquanpeng/one-api/relay/adaptor/tencent"
"github.com/songquanpeng/one-api/relay/adaptor/vertexai"
"github.com/songquanpeng/one-api/relay/adaptor/xunfei"
"github.com/songquanpeng/one-api/relay/adaptor/zhipu"
"github.com/songquanpeng/one-api/relay/apitype"
)
func GetAdaptor(apiType int) adaptor.Adaptor {
switch apiType {
case apitype.AIProxyLibrary:
return &aiproxy.Adaptor{}
case apitype.Ali:
return &ali.Adaptor{}
case apitype.Anthropic:
return &anthropic.Adaptor{}
case apitype.AwsClaude:
return &aws.Adaptor{}
case apitype.Baidu:
return &baidu.Adaptor{}
case apitype.Gemini:
return &gemini.Adaptor{}
case apitype.OpenAI:
return &openai.Adaptor{}
case apitype.PaLM:
return &palm.Adaptor{}
case apitype.Tencent:
return &tencent.Adaptor{}
case apitype.Xunfei:
return &xunfei.Adaptor{}
case apitype.Zhipu:
return &zhipu.Adaptor{}
case apitype.Ollama:
return &ollama.Adaptor{}
case apitype.Coze:
return &coze.Adaptor{}
case apitype.Cohere:
return &cohere.Adaptor{}
case apitype.Cloudflare:
return &cloudflare.Adaptor{}
case apitype.DeepL:
return &deepl.Adaptor{}
case apitype.VertexAI:
return &vertexai.Adaptor{}
case apitype.Proxy:
return &proxy.Adaptor{}
case apitype.Replicate:
return &replicate.Adaptor{}
}
return nil
}

View File

@@ -0,0 +1,8 @@
package ai360
var ModelList = []string{
"360GPT_S2_V9",
"embedding-bert-512-v1",
"embedding_s1_v1",
"semantic_similarity_s1_v1",
}

View File

@@ -0,0 +1,68 @@
package aiproxy
import (
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
type Adaptor struct {
meta *meta.Meta
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.meta = meta
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return fmt.Sprintf("%s/api/library/ask", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
aiProxyLibraryRequest := ConvertRequest(*request)
aiProxyLibraryRequest.LibraryId = a.meta.Config.LibraryID
return aiProxyLibraryRequest, nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {
err, usage = Handler(c, resp)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "aiproxy"
}

View File

@@ -0,0 +1,9 @@
package aiproxy
import "github.com/songquanpeng/one-api/relay/adaptor/openai"
var ModelList = []string{""}
func init() {
ModelList = openai.ModelList
}

View File

@@ -0,0 +1,189 @@
package aiproxy
import (
"bufio"
"encoding/json"
"fmt"
"io"
"net/http"
"strconv"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/random"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
)
// https://docs.aiproxy.io/dev/library#使用已经定制好的知识库进行对话问答
func ConvertRequest(request model.GeneralOpenAIRequest) *LibraryRequest {
query := ""
if len(request.Messages) != 0 {
query = request.Messages[len(request.Messages)-1].StringContent()
}
return &LibraryRequest{
Model: request.Model,
Stream: request.Stream,
Query: query,
}
}
func aiProxyDocuments2Markdown(documents []LibraryDocument) string {
if len(documents) == 0 {
return ""
}
content := "\n\n参考文档\n"
for i, document := range documents {
content += fmt.Sprintf("%d. [%s](%s)\n", i+1, document.Title, document.URL)
}
return content
}
func responseAIProxyLibrary2OpenAI(response *LibraryResponse) *openai.TextResponse {
content := response.Answer + aiProxyDocuments2Markdown(response.Documents)
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: content,
},
FinishReason: "stop",
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func documentsAIProxyLibrary(documents []LibraryDocument) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = aiProxyDocuments2Markdown(documents)
choice.FinishReason = &constant.StopFinishReason
return &openai.ChatCompletionsStreamResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion.chunk",
Created: helper.GetTimestamp(),
Model: "",
Choices: []openai.ChatCompletionsStreamResponseChoice{choice},
}
}
func streamResponseAIProxyLibrary2OpenAI(response *LibraryStreamResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = response.Content
return &openai.ChatCompletionsStreamResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion.chunk",
Created: helper.GetTimestamp(),
Model: response.Model,
Choices: []openai.ChatCompletionsStreamResponseChoice{choice},
}
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var usage model.Usage
var documents []LibraryDocument
scanner := bufio.NewScanner(resp.Body)
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
if atEOF && len(data) == 0 {
return 0, nil, nil
}
if i := strings.Index(string(data), "\n"); i >= 0 {
return i + 1, data[0:i], nil
}
if atEOF {
return len(data), data, nil
}
return 0, nil, nil
})
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
if len(data) < 5 || data[:5] != "data:" {
continue
}
data = data[5:]
var AIProxyLibraryResponse LibraryStreamResponse
err := json.Unmarshal([]byte(data), &AIProxyLibraryResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
if len(AIProxyLibraryResponse.Documents) != 0 {
documents = AIProxyLibraryResponse.Documents
}
response := streamResponseAIProxyLibrary2OpenAI(&AIProxyLibraryResponse)
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
response := documentsAIProxyLibrary(documents)
err := render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
render.Done(c)
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &usage
}
func Handler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var AIProxyLibraryResponse LibraryResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &AIProxyLibraryResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if AIProxyLibraryResponse.ErrCode != 0 {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: AIProxyLibraryResponse.Message,
Type: strconv.Itoa(AIProxyLibraryResponse.ErrCode),
Code: AIProxyLibraryResponse.ErrCode,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseAIProxyLibrary2OpenAI(&AIProxyLibraryResponse)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
if err != nil {
return openai.ErrorWrapper(err, "write_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &fullTextResponse.Usage
}

View File

@@ -0,0 +1,32 @@
package aiproxy
type LibraryRequest struct {
Model string `json:"model"`
Query string `json:"query"`
LibraryId string `json:"libraryId"`
Stream bool `json:"stream"`
}
type LibraryError struct {
ErrCode int `json:"errCode"`
Message string `json:"message"`
}
type LibraryDocument struct {
Title string `json:"title"`
URL string `json:"url"`
}
type LibraryResponse struct {
Success bool `json:"success"`
Answer string `json:"answer"`
Documents []LibraryDocument `json:"documents"`
LibraryError
}
type LibraryStreamResponse struct {
Content string `json:"content"`
Finish bool `json:"finish"`
Model string `json:"model"`
Documents []LibraryDocument `json:"documents"`
}

View File

@@ -0,0 +1,106 @@
package ali
import (
"errors"
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
// https://help.aliyun.com/zh/dashscope/developer-reference/api-details
type Adaptor struct {
meta *meta.Meta
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.meta = meta
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
fullRequestURL := ""
switch meta.Mode {
case relaymode.Embeddings:
fullRequestURL = fmt.Sprintf("%s/api/v1/services/embeddings/text-embedding/text-embedding", meta.BaseURL)
case relaymode.ImagesGenerations:
fullRequestURL = fmt.Sprintf("%s/api/v1/services/aigc/text2image/image-synthesis", meta.BaseURL)
default:
fullRequestURL = fmt.Sprintf("%s/api/v1/services/aigc/text-generation/generation", meta.BaseURL)
}
return fullRequestURL, nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
if meta.IsStream {
req.Header.Set("Accept", "text/event-stream")
req.Header.Set("X-DashScope-SSE", "enable")
}
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
if meta.Mode == relaymode.ImagesGenerations {
req.Header.Set("X-DashScope-Async", "enable")
}
if a.meta.Config.Plugin != "" {
req.Header.Set("X-DashScope-Plugin", a.meta.Config.Plugin)
}
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
switch relayMode {
case relaymode.Embeddings:
aliEmbeddingRequest := ConvertEmbeddingRequest(*request)
return aliEmbeddingRequest, nil
default:
aliRequest := ConvertRequest(*request)
return aliRequest, nil
}
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
aliRequest := ConvertImageRequest(*request)
return aliRequest, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {
switch meta.Mode {
case relaymode.Embeddings:
err, usage = EmbeddingHandler(c, resp)
case relaymode.ImagesGenerations:
err, usage = ImageHandler(c, resp)
default:
err, usage = Handler(c, resp)
}
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "ali"
}

View File

@@ -0,0 +1,23 @@
package ali
var ModelList = []string{
"qwen-turbo", "qwen-turbo-latest",
"qwen-plus", "qwen-plus-latest",
"qwen-max", "qwen-max-latest",
"qwen-max-longcontext",
"qwen-vl-max", "qwen-vl-max-latest", "qwen-vl-plus", "qwen-vl-plus-latest",
"qwen-vl-ocr", "qwen-vl-ocr-latest",
"qwen-audio-turbo",
"qwen-math-plus", "qwen-math-plus-latest", "qwen-math-turbo", "qwen-math-turbo-latest",
"qwen-coder-plus", "qwen-coder-plus-latest", "qwen-coder-turbo", "qwen-coder-turbo-latest",
"qwq-32b-preview", "qwen2.5-72b-instruct", "qwen2.5-32b-instruct", "qwen2.5-14b-instruct", "qwen2.5-7b-instruct", "qwen2.5-3b-instruct", "qwen2.5-1.5b-instruct", "qwen2.5-0.5b-instruct",
"qwen2-72b-instruct", "qwen2-57b-a14b-instruct", "qwen2-7b-instruct", "qwen2-1.5b-instruct", "qwen2-0.5b-instruct",
"qwen1.5-110b-chat", "qwen1.5-72b-chat", "qwen1.5-32b-chat", "qwen1.5-14b-chat", "qwen1.5-7b-chat", "qwen1.5-1.8b-chat", "qwen1.5-0.5b-chat",
"qwen-72b-chat", "qwen-14b-chat", "qwen-7b-chat", "qwen-1.8b-chat", "qwen-1.8b-longcontext-chat",
"qwen2-vl-7b-instruct", "qwen2-vl-2b-instruct", "qwen-vl-v1", "qwen-vl-chat-v1",
"qwen2-audio-instruct", "qwen-audio-chat",
"qwen2.5-math-72b-instruct", "qwen2.5-math-7b-instruct", "qwen2.5-math-1.5b-instruct", "qwen2-math-72b-instruct", "qwen2-math-7b-instruct", "qwen2-math-1.5b-instruct",
"qwen2.5-coder-32b-instruct", "qwen2.5-coder-14b-instruct", "qwen2.5-coder-7b-instruct", "qwen2.5-coder-3b-instruct", "qwen2.5-coder-1.5b-instruct", "qwen2.5-coder-0.5b-instruct",
"text-embedding-v1", "text-embedding-v3", "text-embedding-v2", "text-embedding-async-v2", "text-embedding-async-v1",
"ali-stable-diffusion-xl", "ali-stable-diffusion-v1.5", "wanx-v1",
}

193
relay/adaptor/ali/image.go Normal file
View File

@@ -0,0 +1,193 @@
package ali
import (
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"strings"
"time"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
func ImageHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
apiKey := c.Request.Header.Get("Authorization")
apiKey = strings.TrimPrefix(apiKey, "Bearer ")
responseFormat := c.GetString("response_format")
var aliTaskResponse TaskResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &aliTaskResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if aliTaskResponse.Message != "" {
logger.SysError("aliAsyncTask err: " + string(responseBody))
return openai.ErrorWrapper(errors.New(aliTaskResponse.Message), "ali_async_task_failed", http.StatusInternalServerError), nil
}
aliResponse, _, err := asyncTaskWait(aliTaskResponse.Output.TaskId, apiKey)
if err != nil {
return openai.ErrorWrapper(err, "ali_async_task_wait_failed", http.StatusInternalServerError), nil
}
if aliResponse.Output.TaskStatus != "SUCCEEDED" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: aliResponse.Output.Message,
Type: "ali_error",
Param: "",
Code: aliResponse.Output.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseAli2OpenAIImage(aliResponse, responseFormat)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, nil
}
func asyncTask(taskID string, key string) (*TaskResponse, error, []byte) {
url := fmt.Sprintf("https://dashscope.aliyuncs.com/api/v1/tasks/%s", taskID)
var aliResponse TaskResponse
req, err := http.NewRequest("GET", url, nil)
if err != nil {
return &aliResponse, err, nil
}
req.Header.Set("Authorization", "Bearer "+key)
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
logger.SysError("aliAsyncTask client.Do err: " + err.Error())
return &aliResponse, err, nil
}
defer resp.Body.Close()
responseBody, err := io.ReadAll(resp.Body)
var response TaskResponse
err = json.Unmarshal(responseBody, &response)
if err != nil {
logger.SysError("aliAsyncTask NewDecoder err: " + err.Error())
return &aliResponse, err, nil
}
return &response, nil, responseBody
}
func asyncTaskWait(taskID string, key string) (*TaskResponse, []byte, error) {
waitSeconds := 2
step := 0
maxStep := 20
var taskResponse TaskResponse
var responseBody []byte
for {
step++
rsp, err, body := asyncTask(taskID, key)
responseBody = body
if err != nil {
return &taskResponse, responseBody, err
}
if rsp.Output.TaskStatus == "" {
return &taskResponse, responseBody, nil
}
switch rsp.Output.TaskStatus {
case "FAILED":
fallthrough
case "CANCELED":
fallthrough
case "SUCCEEDED":
fallthrough
case "UNKNOWN":
return rsp, responseBody, nil
}
if step >= maxStep {
break
}
time.Sleep(time.Duration(waitSeconds) * time.Second)
}
return nil, nil, fmt.Errorf("aliAsyncTaskWait timeout")
}
func responseAli2OpenAIImage(response *TaskResponse, responseFormat string) *openai.ImageResponse {
imageResponse := openai.ImageResponse{
Created: helper.GetTimestamp(),
}
for _, data := range response.Output.Results {
var b64Json string
if responseFormat == "b64_json" {
// 读取 data.Url 的图片数据并转存到 b64Json
imageData, err := getImageData(data.Url)
if err != nil {
// 处理获取图片数据失败的情况
logger.SysError("getImageData Error getting image data: " + err.Error())
continue
}
// 将图片数据转为 Base64 编码的字符串
b64Json = Base64Encode(imageData)
} else {
// 如果 responseFormat 不是 "b64_json",则直接使用 data.B64Image
b64Json = data.B64Image
}
imageResponse.Data = append(imageResponse.Data, openai.ImageData{
Url: data.Url,
B64Json: b64Json,
RevisedPrompt: "",
})
}
return &imageResponse
}
func getImageData(url string) ([]byte, error) {
response, err := http.Get(url)
if err != nil {
return nil, err
}
defer response.Body.Close()
imageData, err := io.ReadAll(response.Body)
if err != nil {
return nil, err
}
return imageData, nil
}
func Base64Encode(data []byte) string {
b64Json := base64.StdEncoding.EncodeToString(data)
return b64Json
}

267
relay/adaptor/ali/main.go Normal file
View File

@@ -0,0 +1,267 @@
package ali
import (
"bufio"
"encoding/json"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
// https://help.aliyun.com/document_detail/613695.html?spm=a2c4g.2399480.0.0.1adb778fAdzP9w#341800c0f8w0r
const EnableSearchModelSuffix = "-internet"
func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
messages := make([]Message, 0, len(request.Messages))
for i := 0; i < len(request.Messages); i++ {
message := request.Messages[i]
messages = append(messages, Message{
Content: message.StringContent(),
Role: strings.ToLower(message.Role),
})
}
enableSearch := false
aliModel := request.Model
if strings.HasSuffix(aliModel, EnableSearchModelSuffix) {
enableSearch = true
aliModel = strings.TrimSuffix(aliModel, EnableSearchModelSuffix)
}
request.TopP = helper.Float64PtrMax(request.TopP, 0.9999)
return &ChatRequest{
Model: aliModel,
Input: Input{
Messages: messages,
},
Parameters: Parameters{
EnableSearch: enableSearch,
IncrementalOutput: request.Stream,
Seed: uint64(request.Seed),
MaxTokens: request.MaxTokens,
Temperature: request.Temperature,
TopP: request.TopP,
TopK: request.TopK,
ResultFormat: "message",
Tools: request.Tools,
},
}
}
func ConvertEmbeddingRequest(request model.GeneralOpenAIRequest) *EmbeddingRequest {
return &EmbeddingRequest{
Model: request.Model,
Input: struct {
Texts []string `json:"texts"`
}{
Texts: request.ParseInput(),
},
}
}
func ConvertImageRequest(request model.ImageRequest) *ImageRequest {
var imageRequest ImageRequest
imageRequest.Input.Prompt = request.Prompt
imageRequest.Model = request.Model
imageRequest.Parameters.Size = strings.Replace(request.Size, "x", "*", -1)
imageRequest.Parameters.N = request.N
imageRequest.ResponseFormat = request.ResponseFormat
return &imageRequest
}
func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var aliResponse EmbeddingResponse
err := json.NewDecoder(resp.Body).Decode(&aliResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
if aliResponse.Code != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: aliResponse.Message,
Type: aliResponse.Code,
Param: aliResponse.RequestId,
Code: aliResponse.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
requestModel := c.GetString(ctxkey.RequestModel)
fullTextResponse := embeddingResponseAli2OpenAI(&aliResponse)
fullTextResponse.Model = requestModel
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}
func embeddingResponseAli2OpenAI(response *EmbeddingResponse) *openai.EmbeddingResponse {
openAIEmbeddingResponse := openai.EmbeddingResponse{
Object: "list",
Data: make([]openai.EmbeddingResponseItem, 0, len(response.Output.Embeddings)),
Model: "text-embedding-v1",
Usage: model.Usage{TotalTokens: response.Usage.TotalTokens},
}
for _, item := range response.Output.Embeddings {
openAIEmbeddingResponse.Data = append(openAIEmbeddingResponse.Data, openai.EmbeddingResponseItem{
Object: `embedding`,
Index: item.TextIndex,
Embedding: item.Embedding,
})
}
return &openAIEmbeddingResponse
}
func responseAli2OpenAI(response *ChatResponse) *openai.TextResponse {
fullTextResponse := openai.TextResponse{
Id: response.RequestId,
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: response.Output.Choices,
Usage: model.Usage{
PromptTokens: response.Usage.InputTokens,
CompletionTokens: response.Usage.OutputTokens,
TotalTokens: response.Usage.InputTokens + response.Usage.OutputTokens,
},
}
return &fullTextResponse
}
func streamResponseAli2OpenAI(aliResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
if len(aliResponse.Output.Choices) == 0 {
return nil
}
aliChoice := aliResponse.Output.Choices[0]
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta = aliChoice.Message
if aliChoice.FinishReason != "null" {
finishReason := aliChoice.FinishReason
choice.FinishReason = &finishReason
}
response := openai.ChatCompletionsStreamResponse{
Id: aliResponse.RequestId,
Object: "chat.completion.chunk",
Created: helper.GetTimestamp(),
Model: "qwen",
Choices: []openai.ChatCompletionsStreamResponseChoice{choice},
}
return &response
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var usage model.Usage
scanner := bufio.NewScanner(resp.Body)
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
if atEOF && len(data) == 0 {
return 0, nil, nil
}
if i := strings.Index(string(data), "\n"); i >= 0 {
return i + 1, data[0:i], nil
}
if atEOF {
return len(data), data, nil
}
return 0, nil, nil
})
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
if len(data) < 5 || data[:5] != "data:" {
continue
}
data = data[5:]
var aliResponse ChatResponse
err := json.Unmarshal([]byte(data), &aliResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
if aliResponse.Usage.OutputTokens != 0 {
usage.PromptTokens = aliResponse.Usage.InputTokens
usage.CompletionTokens = aliResponse.Usage.OutputTokens
usage.TotalTokens = aliResponse.Usage.InputTokens + aliResponse.Usage.OutputTokens
}
response := streamResponseAli2OpenAI(&aliResponse)
if response == nil {
continue
}
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &usage
}
func Handler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
ctx := c.Request.Context()
var aliResponse ChatResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
logger.Debugf(ctx, "response body: %s\n", responseBody)
err = json.Unmarshal(responseBody, &aliResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if aliResponse.Code != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: aliResponse.Message,
Type: aliResponse.Code,
Param: aliResponse.RequestId,
Code: aliResponse.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseAli2OpenAI(&aliResponse)
fullTextResponse.Model = "qwen"
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}

154
relay/adaptor/ali/model.go Normal file
View File

@@ -0,0 +1,154 @@
package ali
import (
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
type Message struct {
Content string `json:"content"`
Role string `json:"role"`
}
type Input struct {
//Prompt string `json:"prompt"`
Messages []Message `json:"messages"`
}
type Parameters struct {
TopP *float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
Seed uint64 `json:"seed,omitempty"`
EnableSearch bool `json:"enable_search,omitempty"`
IncrementalOutput bool `json:"incremental_output,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
ResultFormat string `json:"result_format,omitempty"`
Tools []model.Tool `json:"tools,omitempty"`
}
type ChatRequest struct {
Model string `json:"model"`
Input Input `json:"input"`
Parameters Parameters `json:"parameters,omitempty"`
}
type ImageRequest struct {
Model string `json:"model"`
Input struct {
Prompt string `json:"prompt"`
NegativePrompt string `json:"negative_prompt,omitempty"`
} `json:"input"`
Parameters struct {
Size string `json:"size,omitempty"`
N int `json:"n,omitempty"`
Steps string `json:"steps,omitempty"`
Scale string `json:"scale,omitempty"`
} `json:"parameters,omitempty"`
ResponseFormat string `json:"response_format,omitempty"`
}
type TaskResponse struct {
StatusCode int `json:"status_code,omitempty"`
RequestId string `json:"request_id,omitempty"`
Code string `json:"code,omitempty"`
Message string `json:"message,omitempty"`
Output struct {
TaskId string `json:"task_id,omitempty"`
TaskStatus string `json:"task_status,omitempty"`
Code string `json:"code,omitempty"`
Message string `json:"message,omitempty"`
Results []struct {
B64Image string `json:"b64_image,omitempty"`
Url string `json:"url,omitempty"`
Code string `json:"code,omitempty"`
Message string `json:"message,omitempty"`
} `json:"results,omitempty"`
TaskMetrics struct {
Total int `json:"TOTAL,omitempty"`
Succeeded int `json:"SUCCEEDED,omitempty"`
Failed int `json:"FAILED,omitempty"`
} `json:"task_metrics,omitempty"`
} `json:"output,omitempty"`
Usage Usage `json:"usage"`
}
type Header struct {
Action string `json:"action,omitempty"`
Streaming string `json:"streaming,omitempty"`
TaskID string `json:"task_id,omitempty"`
Event string `json:"event,omitempty"`
ErrorCode string `json:"error_code,omitempty"`
ErrorMessage string `json:"error_message,omitempty"`
Attributes any `json:"attributes,omitempty"`
}
type Payload struct {
Model string `json:"model,omitempty"`
Task string `json:"task,omitempty"`
TaskGroup string `json:"task_group,omitempty"`
Function string `json:"function,omitempty"`
Parameters struct {
SampleRate int `json:"sample_rate,omitempty"`
Rate float64 `json:"rate,omitempty"`
Format string `json:"format,omitempty"`
} `json:"parameters,omitempty"`
Input struct {
Text string `json:"text,omitempty"`
} `json:"input,omitempty"`
Usage struct {
Characters int `json:"characters,omitempty"`
} `json:"usage,omitempty"`
}
type WSSMessage struct {
Header Header `json:"header,omitempty"`
Payload Payload `json:"payload,omitempty"`
}
type EmbeddingRequest struct {
Model string `json:"model"`
Input struct {
Texts []string `json:"texts"`
} `json:"input"`
Parameters *struct {
TextType string `json:"text_type,omitempty"`
} `json:"parameters,omitempty"`
}
type Embedding struct {
Embedding []float64 `json:"embedding"`
TextIndex int `json:"text_index"`
}
type EmbeddingResponse struct {
Output struct {
Embeddings []Embedding `json:"embeddings"`
} `json:"output"`
Usage Usage `json:"usage"`
Error
}
type Error struct {
Code string `json:"code"`
Message string `json:"message"`
RequestId string `json:"request_id"`
}
type Usage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
TotalTokens int `json:"total_tokens"`
}
type Output struct {
//Text string `json:"text"`
//FinishReason string `json:"finish_reason"`
Choices []openai.TextResponseChoice `json:"choices"`
}
type ChatResponse struct {
Output Output `json:"output"`
Usage Usage `json:"usage"`
Error
}

View File

@@ -0,0 +1,83 @@
package anthropic
import (
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
type Adaptor struct {
}
func (a *Adaptor) Init(meta *meta.Meta) {
}
// https://docs.anthropic.com/claude/reference/messages_post
// anthopic migrate to Message API
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return fmt.Sprintf("%s/v1/messages", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("x-api-key", meta.APIKey)
anthropicVersion := c.Request.Header.Get("anthropic-version")
if anthropicVersion == "" {
anthropicVersion = "2023-06-01"
}
req.Header.Set("anthropic-version", anthropicVersion)
req.Header.Set("anthropic-beta", "messages-2023-12-15")
// https://x.com/alexalbert__/status/1812921642143900036
// claude-3-5-sonnet can support 8k context
if strings.HasPrefix(meta.ActualModelName, "claude-3-5-sonnet") {
req.Header.Set("anthropic-beta", "max-tokens-3-5-sonnet-2024-07-15")
}
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
c.Set("claude_model", request.Model)
return ConvertRequest(*request), nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "anthropic"
}

View File

@@ -0,0 +1,12 @@
package anthropic
var ModelList = []string{
"claude-instant-1.2", "claude-2.0", "claude-2.1",
"claude-3-haiku-20240307",
"claude-3-5-haiku-20241022",
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
"claude-3-5-sonnet-20240620",
"claude-3-5-sonnet-20241022",
"claude-3-5-sonnet-latest",
}

View File

@@ -0,0 +1,378 @@
package anthropic
import (
"bufio"
"encoding/json"
"fmt"
"github.com/songquanpeng/one-api/common/render"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
func stopReasonClaude2OpenAI(reason *string) string {
if reason == nil {
return ""
}
switch *reason {
case "end_turn":
return "stop"
case "stop_sequence":
return "stop"
case "max_tokens":
return "length"
case "tool_use":
return "tool_calls"
default:
return *reason
}
}
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *Request {
claudeTools := make([]Tool, 0, len(textRequest.Tools))
for _, tool := range textRequest.Tools {
if params, ok := tool.Function.Parameters.(map[string]any); ok {
claudeTools = append(claudeTools, Tool{
Name: tool.Function.Name,
Description: tool.Function.Description,
InputSchema: InputSchema{
Type: params["type"].(string),
Properties: params["properties"],
Required: params["required"],
},
})
}
}
claudeRequest := Request{
Model: textRequest.Model,
MaxTokens: textRequest.MaxTokens,
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
TopK: textRequest.TopK,
Stream: textRequest.Stream,
Tools: claudeTools,
}
if len(claudeTools) > 0 {
claudeToolChoice := struct {
Type string `json:"type"`
Name string `json:"name,omitempty"`
}{Type: "auto"} // default value https://docs.anthropic.com/en/docs/build-with-claude/tool-use#controlling-claudes-output
if choice, ok := textRequest.ToolChoice.(map[string]any); ok {
if function, ok := choice["function"].(map[string]any); ok {
claudeToolChoice.Type = "tool"
claudeToolChoice.Name = function["name"].(string)
}
} else if toolChoiceType, ok := textRequest.ToolChoice.(string); ok {
if toolChoiceType == "any" {
claudeToolChoice.Type = toolChoiceType
}
}
claudeRequest.ToolChoice = claudeToolChoice
}
if claudeRequest.MaxTokens == 0 {
claudeRequest.MaxTokens = 4096
}
// legacy model name mapping
if claudeRequest.Model == "claude-instant-1" {
claudeRequest.Model = "claude-instant-1.1"
} else if claudeRequest.Model == "claude-2" {
claudeRequest.Model = "claude-2.1"
}
for _, message := range textRequest.Messages {
if message.Role == "system" && claudeRequest.System == "" {
claudeRequest.System = message.StringContent()
continue
}
claudeMessage := Message{
Role: message.Role,
}
var content Content
if message.IsStringContent() {
content.Type = "text"
content.Text = message.StringContent()
if message.Role == "tool" {
claudeMessage.Role = "user"
content.Type = "tool_result"
content.Content = content.Text
content.Text = ""
content.ToolUseId = message.ToolCallId
}
claudeMessage.Content = append(claudeMessage.Content, content)
for i := range message.ToolCalls {
inputParam := make(map[string]any)
_ = json.Unmarshal([]byte(message.ToolCalls[i].Function.Arguments.(string)), &inputParam)
claudeMessage.Content = append(claudeMessage.Content, Content{
Type: "tool_use",
Id: message.ToolCalls[i].Id,
Name: message.ToolCalls[i].Function.Name,
Input: inputParam,
})
}
claudeRequest.Messages = append(claudeRequest.Messages, claudeMessage)
continue
}
var contents []Content
openaiContent := message.ParseContent()
for _, part := range openaiContent {
var content Content
if part.Type == model.ContentTypeText {
content.Type = "text"
content.Text = part.Text
} else if part.Type == model.ContentTypeImageURL {
content.Type = "image"
content.Source = &ImageSource{
Type: "base64",
}
mimeType, data, _ := image.GetImageFromUrl(part.ImageURL.Url)
content.Source.MediaType = mimeType
content.Source.Data = data
}
contents = append(contents, content)
}
claudeMessage.Content = contents
claudeRequest.Messages = append(claudeRequest.Messages, claudeMessage)
}
return &claudeRequest
}
// https://docs.anthropic.com/claude/reference/messages-streaming
func StreamResponseClaude2OpenAI(claudeResponse *StreamResponse) (*openai.ChatCompletionsStreamResponse, *Response) {
var response *Response
var responseText string
var stopReason string
tools := make([]model.Tool, 0)
switch claudeResponse.Type {
case "message_start":
return nil, claudeResponse.Message
case "content_block_start":
if claudeResponse.ContentBlock != nil {
responseText = claudeResponse.ContentBlock.Text
if claudeResponse.ContentBlock.Type == "tool_use" {
tools = append(tools, model.Tool{
Id: claudeResponse.ContentBlock.Id,
Type: "function",
Function: model.Function{
Name: claudeResponse.ContentBlock.Name,
Arguments: "",
},
})
}
}
case "content_block_delta":
if claudeResponse.Delta != nil {
responseText = claudeResponse.Delta.Text
if claudeResponse.Delta.Type == "input_json_delta" {
tools = append(tools, model.Tool{
Function: model.Function{
Arguments: claudeResponse.Delta.PartialJson,
},
})
}
}
case "message_delta":
if claudeResponse.Usage != nil {
response = &Response{
Usage: *claudeResponse.Usage,
}
}
if claudeResponse.Delta != nil && claudeResponse.Delta.StopReason != nil {
stopReason = *claudeResponse.Delta.StopReason
}
}
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = responseText
if len(tools) > 0 {
choice.Delta.Content = nil // compatible with other OpenAI derivative applications, like LobeOpenAICompatibleFactory ...
choice.Delta.ToolCalls = tools
}
choice.Delta.Role = "assistant"
finishReason := stopReasonClaude2OpenAI(&stopReason)
if finishReason != "null" {
choice.FinishReason = &finishReason
}
var openaiResponse openai.ChatCompletionsStreamResponse
openaiResponse.Object = "chat.completion.chunk"
openaiResponse.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &openaiResponse, response
}
func ResponseClaude2OpenAI(claudeResponse *Response) *openai.TextResponse {
var responseText string
if len(claudeResponse.Content) > 0 {
responseText = claudeResponse.Content[0].Text
}
tools := make([]model.Tool, 0)
for _, v := range claudeResponse.Content {
if v.Type == "tool_use" {
args, _ := json.Marshal(v.Input)
tools = append(tools, model.Tool{
Id: v.Id,
Type: "function", // compatible with other OpenAI derivative applications
Function: model.Function{
Name: v.Name,
Arguments: string(args),
},
})
}
}
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: responseText,
Name: nil,
ToolCalls: tools,
},
FinishReason: stopReasonClaude2OpenAI(claudeResponse.StopReason),
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", claudeResponse.Id),
Model: claudeResponse.Model,
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
createdTime := helper.GetTimestamp()
scanner := bufio.NewScanner(resp.Body)
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
if atEOF && len(data) == 0 {
return 0, nil, nil
}
if i := strings.Index(string(data), "\n"); i >= 0 {
return i + 1, data[0:i], nil
}
if atEOF {
return len(data), data, nil
}
return 0, nil, nil
})
common.SetEventStreamHeaders(c)
var usage model.Usage
var modelName string
var id string
var lastToolCallChoice openai.ChatCompletionsStreamResponseChoice
for scanner.Scan() {
data := scanner.Text()
if len(data) < 6 || !strings.HasPrefix(data, "data:") {
continue
}
data = strings.TrimPrefix(data, "data:")
data = strings.TrimSpace(data)
var claudeResponse StreamResponse
err := json.Unmarshal([]byte(data), &claudeResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
response, meta := StreamResponseClaude2OpenAI(&claudeResponse)
if meta != nil {
usage.PromptTokens += meta.Usage.InputTokens
usage.CompletionTokens += meta.Usage.OutputTokens
if len(meta.Id) > 0 { // only message_start has an id, otherwise it's a finish_reason event.
modelName = meta.Model
id = fmt.Sprintf("chatcmpl-%s", meta.Id)
continue
} else { // finish_reason case
if len(lastToolCallChoice.Delta.ToolCalls) > 0 {
lastArgs := &lastToolCallChoice.Delta.ToolCalls[len(lastToolCallChoice.Delta.ToolCalls)-1].Function
if len(lastArgs.Arguments.(string)) == 0 { // compatible with OpenAI sending an empty object `{}` when no arguments.
lastArgs.Arguments = "{}"
response.Choices[len(response.Choices)-1].Delta.Content = nil
response.Choices[len(response.Choices)-1].Delta.ToolCalls = lastToolCallChoice.Delta.ToolCalls
}
}
}
}
if response == nil {
continue
}
response.Id = id
response.Model = modelName
response.Created = createdTime
for _, choice := range response.Choices {
if len(choice.Delta.ToolCalls) > 0 {
lastToolCallChoice = choice
}
}
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &usage
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var claudeResponse Response
err = json.Unmarshal(responseBody, &claudeResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if claudeResponse.Error.Type != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: claudeResponse.Error.Message,
Type: claudeResponse.Error.Type,
Param: "",
Code: claudeResponse.Error.Type,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := ResponseClaude2OpenAI(&claudeResponse)
fullTextResponse.Model = modelName
usage := model.Usage{
PromptTokens: claudeResponse.Usage.InputTokens,
CompletionTokens: claudeResponse.Usage.OutputTokens,
TotalTokens: claudeResponse.Usage.InputTokens + claudeResponse.Usage.OutputTokens,
}
fullTextResponse.Usage = usage
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &usage
}

View File

@@ -0,0 +1,110 @@
package anthropic
// https://docs.anthropic.com/claude/reference/messages_post
type Metadata struct {
UserId string `json:"user_id"`
}
type ImageSource struct {
Type string `json:"type"`
MediaType string `json:"media_type"`
Data string `json:"data"`
}
type Content struct {
Type string `json:"type"`
Text string `json:"text,omitempty"`
Source *ImageSource `json:"source,omitempty"`
// tool_calls
Id string `json:"id,omitempty"`
Name string `json:"name,omitempty"`
Input any `json:"input,omitempty"`
Content string `json:"content,omitempty"`
ToolUseId string `json:"tool_use_id,omitempty"`
}
type Message struct {
Role string `json:"role"`
Content []Content `json:"content"`
}
type Tool struct {
Name string `json:"name"`
Description string `json:"description,omitempty"`
InputSchema InputSchema `json:"input_schema"`
}
type InputSchema struct {
Type string `json:"type"`
Properties any `json:"properties,omitempty"`
Required any `json:"required,omitempty"`
}
type Request struct {
Model string `json:"model"`
Messages []Message `json:"messages"`
System string `json:"system,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
StopSequences []string `json:"stop_sequences,omitempty"`
Stream bool `json:"stream,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
Tools []Tool `json:"tools,omitempty"`
ToolChoice any `json:"tool_choice,omitempty"`
//Metadata `json:"metadata,omitempty"`
}
type Usage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
type Error struct {
Type string `json:"type"`
Message string `json:"message"`
}
type ResponseType string
const (
TypeError ResponseType = "error"
TypeStart ResponseType = "message_start"
TypeContentStart ResponseType = "content_block_start"
TypeContent ResponseType = "content_block_delta"
TypePing ResponseType = "ping"
TypeContentStop ResponseType = "content_block_stop"
TypeMessageDelta ResponseType = "message_delta"
TypeMessageStop ResponseType = "message_stop"
)
// https://docs.anthropic.com/claude/reference/messages-streaming
type Response struct {
Id string `json:"id"`
Type string `json:"type"`
Role string `json:"role"`
Content []Content `json:"content"`
Model string `json:"model"`
StopReason *string `json:"stop_reason"`
StopSequence *string `json:"stop_sequence"`
Usage Usage `json:"usage"`
Error Error `json:"error"`
}
type Delta struct {
Type string `json:"type"`
Text string `json:"text"`
PartialJson string `json:"partial_json,omitempty"`
StopReason *string `json:"stop_reason"`
StopSequence *string `json:"stop_sequence"`
}
type StreamResponse struct {
Type string `json:"type"`
Message *Response `json:"message"`
Index int `json:"index"`
ContentBlock *Content `json:"content_block"`
Delta *Delta `json:"delta"`
Usage *Usage `json:"usage"`
}

View File

@@ -0,0 +1,84 @@
package aws
import (
"io"
"net/http"
"github.com/aws/aws-sdk-go-v2/aws"
"github.com/aws/aws-sdk-go-v2/credentials"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
var _ adaptor.Adaptor = new(Adaptor)
type Adaptor struct {
awsAdapter utils.AwsAdapter
Meta *meta.Meta
AwsClient *bedrockruntime.Client
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.Meta = meta
a.AwsClient = bedrockruntime.New(bedrockruntime.Options{
Region: meta.Config.Region,
Credentials: aws.NewCredentialsCache(credentials.NewStaticCredentialsProvider(meta.Config.AK, meta.Config.SK, "")),
})
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
adaptor := GetAdaptor(request.Model)
if adaptor == nil {
return nil, errors.New("adaptor not found")
}
a.awsAdapter = adaptor
return adaptor.ConvertRequest(c, relayMode, request)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if a.awsAdapter == nil {
return nil, utils.WrapErr(errors.New("awsAdapter is nil"))
}
return a.awsAdapter.DoResponse(c, a.AwsClient, meta)
}
func (a *Adaptor) GetModelList() (models []string) {
for model := range adaptors {
models = append(models, model)
}
return
}
func (a *Adaptor) GetChannelName() string {
return "aws"
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return "", nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
return nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return nil, nil
}

View File

@@ -0,0 +1,37 @@
package aws
import (
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/relay/adaptor/anthropic"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
var _ utils.AwsAdapter = new(Adaptor)
type Adaptor struct {
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
claudeReq := anthropic.ConvertRequest(*request)
c.Set(ctxkey.RequestModel, request.Model)
c.Set(ctxkey.ConvertedRequest, claudeReq)
return claudeReq, nil
}
func (a *Adaptor) DoResponse(c *gin.Context, awsCli *bedrockruntime.Client, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, awsCli)
} else {
err, usage = Handler(c, awsCli, meta.ActualModelName)
}
return
}

View File

@@ -0,0 +1,207 @@
// Package aws provides the AWS adaptor for the relay service.
package aws
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"github.com/aws/aws-sdk-go-v2/aws"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime/types"
"github.com/gin-gonic/gin"
"github.com/jinzhu/copier"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/anthropic"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
relaymodel "github.com/songquanpeng/one-api/relay/model"
)
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html
var AwsModelIDMap = map[string]string{
"claude-instant-1.2": "anthropic.claude-instant-v1",
"claude-2.0": "anthropic.claude-v2",
"claude-2.1": "anthropic.claude-v2:1",
"claude-3-haiku-20240307": "anthropic.claude-3-haiku-20240307-v1:0",
"claude-3-sonnet-20240229": "anthropic.claude-3-sonnet-20240229-v1:0",
"claude-3-opus-20240229": "anthropic.claude-3-opus-20240229-v1:0",
"claude-3-5-sonnet-20240620": "anthropic.claude-3-5-sonnet-20240620-v1:0",
"claude-3-5-sonnet-20241022": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"claude-3-5-sonnet-latest": "anthropic.claude-3-5-sonnet-20241022-v2:0",
"claude-3-5-haiku-20241022": "anthropic.claude-3-5-haiku-20241022-v1:0",
}
func awsModelID(requestModel string) (string, error) {
if awsModelID, ok := AwsModelIDMap[requestModel]; ok {
return awsModelID, nil
}
return "", errors.Errorf("model %s not found", requestModel)
}
func Handler(c *gin.Context, awsCli *bedrockruntime.Client, modelName string) (*relaymodel.ErrorWithStatusCode, *relaymodel.Usage) {
awsModelId, err := awsModelID(c.GetString(ctxkey.RequestModel))
if err != nil {
return utils.WrapErr(errors.Wrap(err, "awsModelID")), nil
}
awsReq := &bedrockruntime.InvokeModelInput{
ModelId: aws.String(awsModelId),
Accept: aws.String("application/json"),
ContentType: aws.String("application/json"),
}
claudeReq_, ok := c.Get(ctxkey.ConvertedRequest)
if !ok {
return utils.WrapErr(errors.New("request not found")), nil
}
claudeReq := claudeReq_.(*anthropic.Request)
awsClaudeReq := &Request{
AnthropicVersion: "bedrock-2023-05-31",
}
if err = copier.Copy(awsClaudeReq, claudeReq); err != nil {
return utils.WrapErr(errors.Wrap(err, "copy request")), nil
}
awsReq.Body, err = json.Marshal(awsClaudeReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "marshal request")), nil
}
awsResp, err := awsCli.InvokeModel(c.Request.Context(), awsReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "InvokeModel")), nil
}
claudeResponse := new(anthropic.Response)
err = json.Unmarshal(awsResp.Body, claudeResponse)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "unmarshal response")), nil
}
openaiResp := anthropic.ResponseClaude2OpenAI(claudeResponse)
openaiResp.Model = modelName
usage := relaymodel.Usage{
PromptTokens: claudeResponse.Usage.InputTokens,
CompletionTokens: claudeResponse.Usage.OutputTokens,
TotalTokens: claudeResponse.Usage.InputTokens + claudeResponse.Usage.OutputTokens,
}
openaiResp.Usage = usage
c.JSON(http.StatusOK, openaiResp)
return nil, &usage
}
func StreamHandler(c *gin.Context, awsCli *bedrockruntime.Client) (*relaymodel.ErrorWithStatusCode, *relaymodel.Usage) {
createdTime := helper.GetTimestamp()
awsModelId, err := awsModelID(c.GetString(ctxkey.RequestModel))
if err != nil {
return utils.WrapErr(errors.Wrap(err, "awsModelID")), nil
}
awsReq := &bedrockruntime.InvokeModelWithResponseStreamInput{
ModelId: aws.String(awsModelId),
Accept: aws.String("application/json"),
ContentType: aws.String("application/json"),
}
claudeReq_, ok := c.Get(ctxkey.ConvertedRequest)
if !ok {
return utils.WrapErr(errors.New("request not found")), nil
}
claudeReq := claudeReq_.(*anthropic.Request)
awsClaudeReq := &Request{
AnthropicVersion: "bedrock-2023-05-31",
}
if err = copier.Copy(awsClaudeReq, claudeReq); err != nil {
return utils.WrapErr(errors.Wrap(err, "copy request")), nil
}
awsReq.Body, err = json.Marshal(awsClaudeReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "marshal request")), nil
}
awsResp, err := awsCli.InvokeModelWithResponseStream(c.Request.Context(), awsReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "InvokeModelWithResponseStream")), nil
}
stream := awsResp.GetStream()
defer stream.Close()
c.Writer.Header().Set("Content-Type", "text/event-stream")
var usage relaymodel.Usage
var id string
var lastToolCallChoice openai.ChatCompletionsStreamResponseChoice
c.Stream(func(w io.Writer) bool {
event, ok := <-stream.Events()
if !ok {
c.Render(-1, common.CustomEvent{Data: "data: [DONE]"})
return false
}
switch v := event.(type) {
case *types.ResponseStreamMemberChunk:
claudeResp := new(anthropic.StreamResponse)
err := json.NewDecoder(bytes.NewReader(v.Value.Bytes)).Decode(claudeResp)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
return false
}
response, meta := anthropic.StreamResponseClaude2OpenAI(claudeResp)
if meta != nil {
usage.PromptTokens += meta.Usage.InputTokens
usage.CompletionTokens += meta.Usage.OutputTokens
if len(meta.Id) > 0 { // only message_start has an id, otherwise it's a finish_reason event.
id = fmt.Sprintf("chatcmpl-%s", meta.Id)
return true
} else { // finish_reason case
if len(lastToolCallChoice.Delta.ToolCalls) > 0 {
lastArgs := &lastToolCallChoice.Delta.ToolCalls[len(lastToolCallChoice.Delta.ToolCalls)-1].Function
if len(lastArgs.Arguments.(string)) == 0 { // compatible with OpenAI sending an empty object `{}` when no arguments.
lastArgs.Arguments = "{}"
response.Choices[len(response.Choices)-1].Delta.Content = nil
response.Choices[len(response.Choices)-1].Delta.ToolCalls = lastToolCallChoice.Delta.ToolCalls
}
}
}
}
if response == nil {
return true
}
response.Id = id
response.Model = c.GetString(ctxkey.OriginalModel)
response.Created = createdTime
for _, choice := range response.Choices {
if len(choice.Delta.ToolCalls) > 0 {
lastToolCallChoice = choice
}
}
jsonStr, err := json.Marshal(response)
if err != nil {
logger.SysError("error marshalling stream response: " + err.Error())
return true
}
c.Render(-1, common.CustomEvent{Data: "data: " + string(jsonStr)})
return true
case *types.UnknownUnionMember:
fmt.Println("unknown tag:", v.Tag)
return false
default:
fmt.Println("union is nil or unknown type")
return false
}
})
return nil, &usage
}

View File

@@ -0,0 +1,20 @@
package aws
import "github.com/songquanpeng/one-api/relay/adaptor/anthropic"
// Request is the request to AWS Claude
//
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
type Request struct {
// AnthropicVersion should be "bedrock-2023-05-31"
AnthropicVersion string `json:"anthropic_version"`
Messages []anthropic.Message `json:"messages"`
System string `json:"system,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
StopSequences []string `json:"stop_sequences,omitempty"`
Tools []anthropic.Tool `json:"tools,omitempty"`
ToolChoice any `json:"tool_choice,omitempty"`
}

View File

@@ -0,0 +1,37 @@
package aws
import (
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
var _ utils.AwsAdapter = new(Adaptor)
type Adaptor struct {
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
llamaReq := ConvertRequest(*request)
c.Set(ctxkey.RequestModel, request.Model)
c.Set(ctxkey.ConvertedRequest, llamaReq)
return llamaReq, nil
}
func (a *Adaptor) DoResponse(c *gin.Context, awsCli *bedrockruntime.Client, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, awsCli)
} else {
err, usage = Handler(c, awsCli, meta.ActualModelName)
}
return
}

View File

@@ -0,0 +1,231 @@
// Package aws provides the AWS adaptor for the relay service.
package aws
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"text/template"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/common/random"
"github.com/aws/aws-sdk-go-v2/aws"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime/types"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
relaymodel "github.com/songquanpeng/one-api/relay/model"
)
// Only support llama-3-8b and llama-3-70b instruction models
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html
var AwsModelIDMap = map[string]string{
"llama3-8b-8192": "meta.llama3-8b-instruct-v1:0",
"llama3-70b-8192": "meta.llama3-70b-instruct-v1:0",
}
func awsModelID(requestModel string) (string, error) {
if awsModelID, ok := AwsModelIDMap[requestModel]; ok {
return awsModelID, nil
}
return "", errors.Errorf("model %s not found", requestModel)
}
// promptTemplate with range
const promptTemplate = `<|begin_of_text|>{{range .Messages}}<|start_header_id|>{{.Role}}<|end_header_id|>{{.StringContent}}<|eot_id|>{{end}}<|start_header_id|>assistant<|end_header_id|>
`
var promptTpl = template.Must(template.New("llama3-chat").Parse(promptTemplate))
func RenderPrompt(messages []relaymodel.Message) string {
var buf bytes.Buffer
err := promptTpl.Execute(&buf, struct{ Messages []relaymodel.Message }{messages})
if err != nil {
logger.SysError("error rendering prompt messages: " + err.Error())
}
return buf.String()
}
func ConvertRequest(textRequest relaymodel.GeneralOpenAIRequest) *Request {
llamaRequest := Request{
MaxGenLen: textRequest.MaxTokens,
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
}
if llamaRequest.MaxGenLen == 0 {
llamaRequest.MaxGenLen = 2048
}
prompt := RenderPrompt(textRequest.Messages)
llamaRequest.Prompt = prompt
return &llamaRequest
}
func Handler(c *gin.Context, awsCli *bedrockruntime.Client, modelName string) (*relaymodel.ErrorWithStatusCode, *relaymodel.Usage) {
awsModelId, err := awsModelID(c.GetString(ctxkey.RequestModel))
if err != nil {
return utils.WrapErr(errors.Wrap(err, "awsModelID")), nil
}
awsReq := &bedrockruntime.InvokeModelInput{
ModelId: aws.String(awsModelId),
Accept: aws.String("application/json"),
ContentType: aws.String("application/json"),
}
llamaReq, ok := c.Get(ctxkey.ConvertedRequest)
if !ok {
return utils.WrapErr(errors.New("request not found")), nil
}
awsReq.Body, err = json.Marshal(llamaReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "marshal request")), nil
}
awsResp, err := awsCli.InvokeModel(c.Request.Context(), awsReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "InvokeModel")), nil
}
var llamaResponse Response
err = json.Unmarshal(awsResp.Body, &llamaResponse)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "unmarshal response")), nil
}
openaiResp := ResponseLlama2OpenAI(&llamaResponse)
openaiResp.Model = modelName
usage := relaymodel.Usage{
PromptTokens: llamaResponse.PromptTokenCount,
CompletionTokens: llamaResponse.GenerationTokenCount,
TotalTokens: llamaResponse.PromptTokenCount + llamaResponse.GenerationTokenCount,
}
openaiResp.Usage = usage
c.JSON(http.StatusOK, openaiResp)
return nil, &usage
}
func ResponseLlama2OpenAI(llamaResponse *Response) *openai.TextResponse {
var responseText string
if len(llamaResponse.Generation) > 0 {
responseText = llamaResponse.Generation
}
choice := openai.TextResponseChoice{
Index: 0,
Message: relaymodel.Message{
Role: "assistant",
Content: responseText,
Name: nil,
},
FinishReason: llamaResponse.StopReason,
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func StreamHandler(c *gin.Context, awsCli *bedrockruntime.Client) (*relaymodel.ErrorWithStatusCode, *relaymodel.Usage) {
createdTime := helper.GetTimestamp()
awsModelId, err := awsModelID(c.GetString(ctxkey.RequestModel))
if err != nil {
return utils.WrapErr(errors.Wrap(err, "awsModelID")), nil
}
awsReq := &bedrockruntime.InvokeModelWithResponseStreamInput{
ModelId: aws.String(awsModelId),
Accept: aws.String("application/json"),
ContentType: aws.String("application/json"),
}
llamaReq, ok := c.Get(ctxkey.ConvertedRequest)
if !ok {
return utils.WrapErr(errors.New("request not found")), nil
}
awsReq.Body, err = json.Marshal(llamaReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "marshal request")), nil
}
awsResp, err := awsCli.InvokeModelWithResponseStream(c.Request.Context(), awsReq)
if err != nil {
return utils.WrapErr(errors.Wrap(err, "InvokeModelWithResponseStream")), nil
}
stream := awsResp.GetStream()
defer stream.Close()
c.Writer.Header().Set("Content-Type", "text/event-stream")
var usage relaymodel.Usage
c.Stream(func(w io.Writer) bool {
event, ok := <-stream.Events()
if !ok {
c.Render(-1, common.CustomEvent{Data: "data: [DONE]"})
return false
}
switch v := event.(type) {
case *types.ResponseStreamMemberChunk:
var llamaResp StreamResponse
err := json.NewDecoder(bytes.NewReader(v.Value.Bytes)).Decode(&llamaResp)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
return false
}
if llamaResp.PromptTokenCount > 0 {
usage.PromptTokens = llamaResp.PromptTokenCount
}
if llamaResp.StopReason == "stop" {
usage.CompletionTokens = llamaResp.GenerationTokenCount
usage.TotalTokens = usage.PromptTokens + usage.CompletionTokens
}
response := StreamResponseLlama2OpenAI(&llamaResp)
response.Id = fmt.Sprintf("chatcmpl-%s", random.GetUUID())
response.Model = c.GetString(ctxkey.OriginalModel)
response.Created = createdTime
jsonStr, err := json.Marshal(response)
if err != nil {
logger.SysError("error marshalling stream response: " + err.Error())
return true
}
c.Render(-1, common.CustomEvent{Data: "data: " + string(jsonStr)})
return true
case *types.UnknownUnionMember:
fmt.Println("unknown tag:", v.Tag)
return false
default:
fmt.Println("union is nil or unknown type")
return false
}
})
return nil, &usage
}
func StreamResponseLlama2OpenAI(llamaResponse *StreamResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = llamaResponse.Generation
choice.Delta.Role = "assistant"
finishReason := llamaResponse.StopReason
if finishReason != "null" {
choice.FinishReason = &finishReason
}
var openaiResponse openai.ChatCompletionsStreamResponse
openaiResponse.Object = "chat.completion.chunk"
openaiResponse.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &openaiResponse
}

View File

@@ -0,0 +1,45 @@
package aws_test
import (
"testing"
aws "github.com/songquanpeng/one-api/relay/adaptor/aws/llama3"
relaymodel "github.com/songquanpeng/one-api/relay/model"
"github.com/stretchr/testify/assert"
)
func TestRenderPrompt(t *testing.T) {
messages := []relaymodel.Message{
{
Role: "user",
Content: "What's your name?",
},
}
prompt := aws.RenderPrompt(messages)
expected := `<|begin_of_text|><|start_header_id|>user<|end_header_id|>What's your name?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
`
assert.Equal(t, expected, prompt)
messages = []relaymodel.Message{
{
Role: "system",
Content: "Your name is Kat. You are a detective.",
},
{
Role: "user",
Content: "What's your name?",
},
{
Role: "assistant",
Content: "Kat",
},
{
Role: "user",
Content: "What's your job?",
},
}
prompt = aws.RenderPrompt(messages)
expected = `<|begin_of_text|><|start_header_id|>system<|end_header_id|>Your name is Kat. You are a detective.<|eot_id|><|start_header_id|>user<|end_header_id|>What's your name?<|eot_id|><|start_header_id|>assistant<|end_header_id|>Kat<|eot_id|><|start_header_id|>user<|end_header_id|>What's your job?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
`
assert.Equal(t, expected, prompt)
}

View File

@@ -0,0 +1,29 @@
package aws
// Request is the request to AWS Llama3
//
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-meta.html
type Request struct {
Prompt string `json:"prompt"`
MaxGenLen int `json:"max_gen_len,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
}
// Response is the response from AWS Llama3
//
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-meta.html
type Response struct {
Generation string `json:"generation"`
PromptTokenCount int `json:"prompt_token_count"`
GenerationTokenCount int `json:"generation_token_count"`
StopReason string `json:"stop_reason"`
}
// {'generation': 'Hi', 'prompt_token_count': 15, 'generation_token_count': 1, 'stop_reason': None}
type StreamResponse struct {
Generation string `json:"generation"`
PromptTokenCount int `json:"prompt_token_count"`
GenerationTokenCount int `json:"generation_token_count"`
StopReason string `json:"stop_reason"`
}

View File

@@ -0,0 +1,39 @@
package aws
import (
claude "github.com/songquanpeng/one-api/relay/adaptor/aws/claude"
llama3 "github.com/songquanpeng/one-api/relay/adaptor/aws/llama3"
"github.com/songquanpeng/one-api/relay/adaptor/aws/utils"
)
type AwsModelType int
const (
AwsClaude AwsModelType = iota + 1
AwsLlama3
)
var (
adaptors = map[string]AwsModelType{}
)
func init() {
for model := range claude.AwsModelIDMap {
adaptors[model] = AwsClaude
}
for model := range llama3.AwsModelIDMap {
adaptors[model] = AwsLlama3
}
}
func GetAdaptor(model string) utils.AwsAdapter {
adaptorType := adaptors[model]
switch adaptorType {
case AwsClaude:
return &claude.Adaptor{}
case AwsLlama3:
return &llama3.Adaptor{}
default:
return nil
}
}

View File

@@ -0,0 +1,51 @@
package utils
import (
"errors"
"io"
"net/http"
"github.com/aws/aws-sdk-go-v2/aws"
"github.com/aws/aws-sdk-go-v2/credentials"
"github.com/aws/aws-sdk-go-v2/service/bedrockruntime"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
type AwsAdapter interface {
ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error)
DoResponse(c *gin.Context, awsCli *bedrockruntime.Client, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode)
}
type Adaptor struct {
Meta *meta.Meta
AwsClient *bedrockruntime.Client
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.Meta = meta
a.AwsClient = bedrockruntime.New(bedrockruntime.Options{
Region: meta.Config.Region,
Credentials: aws.NewCredentialsCache(credentials.NewStaticCredentialsProvider(meta.Config.AK, meta.Config.SK, "")),
})
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return "", nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
return nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return nil, nil
}

View File

@@ -0,0 +1,16 @@
package utils
import (
"net/http"
relaymodel "github.com/songquanpeng/one-api/relay/model"
)
func WrapErr(err error) *relaymodel.ErrorWithStatusCode {
return &relaymodel.ErrorWithStatusCode{
StatusCode: http.StatusInternalServerError,
Error: relaymodel.Error{
Message: err.Error(),
},
}
}

View File

@@ -0,0 +1,7 @@
package baichuan
var ModelList = []string{
"Baichuan2-Turbo",
"Baichuan2-Turbo-192k",
"Baichuan-Text-Embedding",
}

View File

@@ -0,0 +1,143 @@
package baidu
import (
"errors"
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
type Adaptor struct {
}
func (a *Adaptor) Init(meta *meta.Meta) {
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t
suffix := "chat/"
if strings.HasPrefix(meta.ActualModelName, "Embedding") {
suffix = "embeddings/"
}
if strings.HasPrefix(meta.ActualModelName, "bge-large") {
suffix = "embeddings/"
}
if strings.HasPrefix(meta.ActualModelName, "tao-8k") {
suffix = "embeddings/"
}
switch meta.ActualModelName {
case "ERNIE-4.0":
suffix += "completions_pro"
case "ERNIE-Bot-4":
suffix += "completions_pro"
case "ERNIE-Bot":
suffix += "completions"
case "ERNIE-Bot-turbo":
suffix += "eb-instant"
case "ERNIE-Speed":
suffix += "ernie_speed"
case "ERNIE-4.0-8K":
suffix += "completions_pro"
case "ERNIE-3.5-8K":
suffix += "completions"
case "ERNIE-3.5-8K-0205":
suffix += "ernie-3.5-8k-0205"
case "ERNIE-3.5-8K-1222":
suffix += "ernie-3.5-8k-1222"
case "ERNIE-Bot-8K":
suffix += "ernie_bot_8k"
case "ERNIE-3.5-4K-0205":
suffix += "ernie-3.5-4k-0205"
case "ERNIE-Speed-8K":
suffix += "ernie_speed"
case "ERNIE-Speed-128K":
suffix += "ernie-speed-128k"
case "ERNIE-Lite-8K-0922":
suffix += "eb-instant"
case "ERNIE-Lite-8K-0308":
suffix += "ernie-lite-8k"
case "ERNIE-Tiny-8K":
suffix += "ernie-tiny-8k"
case "BLOOMZ-7B":
suffix += "bloomz_7b1"
case "Embedding-V1":
suffix += "embedding-v1"
case "bge-large-zh":
suffix += "bge_large_zh"
case "bge-large-en":
suffix += "bge_large_en"
case "tao-8k":
suffix += "tao_8k"
default:
suffix += strings.ToLower(meta.ActualModelName)
}
fullRequestURL := fmt.Sprintf("%s/rpc/2.0/ai_custom/v1/wenxinworkshop/%s", meta.BaseURL, suffix)
var accessToken string
var err error
if accessToken, err = GetAccessToken(meta.APIKey); err != nil {
return "", err
}
fullRequestURL += "?access_token=" + accessToken
return fullRequestURL, nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
switch relayMode {
case relaymode.Embeddings:
baiduEmbeddingRequest := ConvertEmbeddingRequest(*request)
return baiduEmbeddingRequest, nil
default:
baiduRequest := ConvertRequest(*request)
return baiduRequest, nil
}
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {
switch meta.Mode {
case relaymode.Embeddings:
err, usage = EmbeddingHandler(c, resp)
default:
err, usage = Handler(c, resp)
}
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "baidu"
}

View File

@@ -0,0 +1,20 @@
package baidu
var ModelList = []string{
"ERNIE-4.0-8K",
"ERNIE-3.5-8K",
"ERNIE-3.5-8K-0205",
"ERNIE-3.5-8K-1222",
"ERNIE-Bot-8K",
"ERNIE-3.5-4K-0205",
"ERNIE-Speed-8K",
"ERNIE-Speed-128K",
"ERNIE-Lite-8K-0922",
"ERNIE-Lite-8K-0308",
"ERNIE-Tiny-8K",
"BLOOMZ-7B",
"Embedding-V1",
"bge-large-zh",
"bge-large-en",
"tao-8k",
}

312
relay/adaptor/baidu/main.go Normal file
View File

@@ -0,0 +1,312 @@
package baidu
import (
"bufio"
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"strings"
"sync"
"time"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/client"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
)
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/flfmc9do2
type TokenResponse struct {
ExpiresIn int `json:"expires_in"`
AccessToken string `json:"access_token"`
}
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
}
type ChatRequest struct {
Messages []Message `json:"messages"`
Temperature *float64 `json:"temperature,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
PenaltyScore *float64 `json:"penalty_score,omitempty"`
Stream bool `json:"stream,omitempty"`
System string `json:"system,omitempty"`
DisableSearch bool `json:"disable_search,omitempty"`
EnableCitation bool `json:"enable_citation,omitempty"`
MaxOutputTokens int `json:"max_output_tokens,omitempty"`
UserId string `json:"user_id,omitempty"`
}
type Error struct {
ErrorCode int `json:"error_code"`
ErrorMsg string `json:"error_msg"`
}
var baiduTokenStore sync.Map
func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
baiduRequest := ChatRequest{
Messages: make([]Message, 0, len(request.Messages)),
Temperature: request.Temperature,
TopP: request.TopP,
PenaltyScore: request.FrequencyPenalty,
Stream: request.Stream,
DisableSearch: false,
EnableCitation: false,
MaxOutputTokens: request.MaxTokens,
UserId: request.User,
}
for _, message := range request.Messages {
if message.Role == "system" {
baiduRequest.System = message.StringContent()
} else {
baiduRequest.Messages = append(baiduRequest.Messages, Message{
Role: message.Role,
Content: message.StringContent(),
})
}
}
return &baiduRequest
}
func responseBaidu2OpenAI(response *ChatResponse) *openai.TextResponse {
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: response.Result,
},
FinishReason: "stop",
}
fullTextResponse := openai.TextResponse{
Id: response.Id,
Object: "chat.completion",
Created: response.Created,
Choices: []openai.TextResponseChoice{choice},
Usage: response.Usage,
}
return &fullTextResponse
}
func streamResponseBaidu2OpenAI(baiduResponse *ChatStreamResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = baiduResponse.Result
if baiduResponse.IsEnd {
choice.FinishReason = &constant.StopFinishReason
}
response := openai.ChatCompletionsStreamResponse{
Id: baiduResponse.Id,
Object: "chat.completion.chunk",
Created: baiduResponse.Created,
Model: "ernie-bot",
Choices: []openai.ChatCompletionsStreamResponseChoice{choice},
}
return &response
}
func ConvertEmbeddingRequest(request model.GeneralOpenAIRequest) *EmbeddingRequest {
return &EmbeddingRequest{
Input: request.ParseInput(),
}
}
func embeddingResponseBaidu2OpenAI(response *EmbeddingResponse) *openai.EmbeddingResponse {
openAIEmbeddingResponse := openai.EmbeddingResponse{
Object: "list",
Data: make([]openai.EmbeddingResponseItem, 0, len(response.Data)),
Model: "baidu-embedding",
Usage: response.Usage,
}
for _, item := range response.Data {
openAIEmbeddingResponse.Data = append(openAIEmbeddingResponse.Data, openai.EmbeddingResponseItem{
Object: item.Object,
Index: item.Index,
Embedding: item.Embedding,
})
}
return &openAIEmbeddingResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var usage model.Usage
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
if len(data) < 6 {
continue
}
data = data[6:]
var baiduResponse ChatStreamResponse
err := json.Unmarshal([]byte(data), &baiduResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
if baiduResponse.Usage.TotalTokens != 0 {
usage.TotalTokens = baiduResponse.Usage.TotalTokens
usage.PromptTokens = baiduResponse.Usage.PromptTokens
usage.CompletionTokens = baiduResponse.Usage.TotalTokens - baiduResponse.Usage.PromptTokens
}
response := streamResponseBaidu2OpenAI(&baiduResponse)
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &usage
}
func Handler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var baiduResponse ChatResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &baiduResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if baiduResponse.ErrorMsg != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: baiduResponse.ErrorMsg,
Type: "baidu_error",
Param: "",
Code: baiduResponse.ErrorCode,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseBaidu2OpenAI(&baiduResponse)
fullTextResponse.Model = "ernie-bot"
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}
func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var baiduResponse EmbeddingResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &baiduResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if baiduResponse.ErrorMsg != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: baiduResponse.ErrorMsg,
Type: "baidu_error",
Param: "",
Code: baiduResponse.ErrorCode,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := embeddingResponseBaidu2OpenAI(&baiduResponse)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}
func GetAccessToken(apiKey string) (string, error) {
if val, ok := baiduTokenStore.Load(apiKey); ok {
var accessToken AccessToken
if accessToken, ok = val.(AccessToken); ok {
// soon this will expire
if time.Now().Add(time.Hour).After(accessToken.ExpiresAt) {
go func() {
_, _ = getBaiduAccessTokenHelper(apiKey)
}()
}
return accessToken.AccessToken, nil
}
}
accessToken, err := getBaiduAccessTokenHelper(apiKey)
if err != nil {
return "", err
}
if accessToken == nil {
return "", errors.New("GetAccessToken return a nil token")
}
return (*accessToken).AccessToken, nil
}
func getBaiduAccessTokenHelper(apiKey string) (*AccessToken, error) {
parts := strings.Split(apiKey, "|")
if len(parts) != 2 {
return nil, errors.New("invalid baidu apikey")
}
req, err := http.NewRequest("POST", fmt.Sprintf("https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=%s&client_secret=%s",
parts[0], parts[1]), nil)
if err != nil {
return nil, err
}
req.Header.Add("Content-Type", "application/json")
req.Header.Add("Accept", "application/json")
res, err := client.ImpatientHTTPClient.Do(req)
if err != nil {
return nil, err
}
defer res.Body.Close()
var accessToken AccessToken
err = json.NewDecoder(res.Body).Decode(&accessToken)
if err != nil {
return nil, err
}
if accessToken.Error != "" {
return nil, errors.New(accessToken.Error + ": " + accessToken.ErrorDescription)
}
if accessToken.AccessToken == "" {
return nil, errors.New("getBaiduAccessTokenHelper get empty access token")
}
accessToken.ExpiresAt = time.Now().Add(time.Duration(accessToken.ExpiresIn) * time.Second)
baiduTokenStore.Store(apiKey, accessToken)
return &accessToken, nil
}

View File

@@ -0,0 +1,51 @@
package baidu
import (
"time"
"github.com/songquanpeng/one-api/relay/model"
)
type ChatResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Result string `json:"result"`
IsTruncated bool `json:"is_truncated"`
NeedClearHistory bool `json:"need_clear_history"`
Usage model.Usage `json:"usage"`
Error
}
type ChatStreamResponse struct {
ChatResponse
SentenceId int `json:"sentence_id"`
IsEnd bool `json:"is_end"`
}
type EmbeddingRequest struct {
Input []string `json:"input"`
}
type EmbeddingData struct {
Object string `json:"object"`
Embedding []float64 `json:"embedding"`
Index int `json:"index"`
}
type EmbeddingResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Data []EmbeddingData `json:"data"`
Usage model.Usage `json:"usage"`
Error
}
type AccessToken struct {
AccessToken string `json:"access_token"`
Error string `json:"error,omitempty"`
ErrorDescription string `json:"error_description,omitempty"`
ExpiresIn int64 `json:"expires_in,omitempty"`
ExpiresAt time.Time `json:"-"`
}

View File

@@ -0,0 +1,100 @@
package cloudflare
import (
"errors"
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
type Adaptor struct {
meta *meta.Meta
}
// ConvertImageRequest implements adaptor.Adaptor.
func (*Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
return nil, errors.New("not implemented")
}
// ConvertImageRequest implements adaptor.Adaptor.
func (a *Adaptor) Init(meta *meta.Meta) {
a.meta = meta
}
// WorkerAI cannot be used across accounts with AIGateWay
// https://developers.cloudflare.com/ai-gateway/providers/workersai/#openai-compatible-endpoints
// https://gateway.ai.cloudflare.com/v1/{account_id}/{gateway_id}/workers-ai
func (a *Adaptor) isAIGateWay(baseURL string) bool {
return strings.HasPrefix(baseURL, "https://gateway.ai.cloudflare.com") && strings.HasSuffix(baseURL, "/workers-ai")
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
isAIGateWay := a.isAIGateWay(meta.BaseURL)
var urlPrefix string
if isAIGateWay {
urlPrefix = meta.BaseURL
} else {
urlPrefix = fmt.Sprintf("%s/client/v4/accounts/%s/ai", meta.BaseURL, meta.Config.UserID)
}
switch meta.Mode {
case relaymode.ChatCompletions:
return fmt.Sprintf("%s/v1/chat/completions", urlPrefix), nil
case relaymode.Embeddings:
return fmt.Sprintf("%s/v1/embeddings", urlPrefix), nil
default:
if isAIGateWay {
return fmt.Sprintf("%s/%s", urlPrefix, meta.ActualModelName), nil
}
return fmt.Sprintf("%s/run/%s", urlPrefix, meta.ActualModelName), nil
}
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
switch relayMode {
case relaymode.Completions:
return ConvertCompletionsRequest(*request), nil
case relaymode.ChatCompletions, relaymode.Embeddings:
return request, nil
default:
return nil, errors.New("not implemented")
}
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp, meta.PromptTokens, meta.ActualModelName)
} else {
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "cloudflare"
}

View File

@@ -0,0 +1,37 @@
package cloudflare
var ModelList = []string{
"@cf/meta/llama-3.1-8b-instruct",
"@cf/meta/llama-2-7b-chat-fp16",
"@cf/meta/llama-2-7b-chat-int8",
"@cf/mistral/mistral-7b-instruct-v0.1",
"@hf/thebloke/deepseek-coder-6.7b-base-awq",
"@hf/thebloke/deepseek-coder-6.7b-instruct-awq",
"@cf/deepseek-ai/deepseek-math-7b-base",
"@cf/deepseek-ai/deepseek-math-7b-instruct",
"@cf/thebloke/discolm-german-7b-v1-awq",
"@cf/tiiuae/falcon-7b-instruct",
"@cf/google/gemma-2b-it-lora",
"@hf/google/gemma-7b-it",
"@cf/google/gemma-7b-it-lora",
"@hf/nousresearch/hermes-2-pro-mistral-7b",
"@hf/thebloke/llama-2-13b-chat-awq",
"@cf/meta-llama/llama-2-7b-chat-hf-lora",
"@cf/meta/llama-3-8b-instruct",
"@hf/thebloke/llamaguard-7b-awq",
"@hf/thebloke/mistral-7b-instruct-v0.1-awq",
"@hf/mistralai/mistral-7b-instruct-v0.2",
"@cf/mistral/mistral-7b-instruct-v0.2-lora",
"@hf/thebloke/neural-chat-7b-v3-1-awq",
"@cf/openchat/openchat-3.5-0106",
"@hf/thebloke/openhermes-2.5-mistral-7b-awq",
"@cf/microsoft/phi-2",
"@cf/qwen/qwen1.5-0.5b-chat",
"@cf/qwen/qwen1.5-1.8b-chat",
"@cf/qwen/qwen1.5-14b-chat-awq",
"@cf/qwen/qwen1.5-7b-chat-awq",
"@cf/defog/sqlcoder-7b-2",
"@hf/nexusflow/starling-lm-7b-beta",
"@cf/tinyllama/tinyllama-1.1b-chat-v1.0",
"@hf/thebloke/zephyr-7b-beta-awq",
}

View File

@@ -0,0 +1,115 @@
package cloudflare
import (
"bufio"
"encoding/json"
"io"
"net/http"
"strings"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/common/render"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
func ConvertCompletionsRequest(textRequest model.GeneralOpenAIRequest) *Request {
p, _ := textRequest.Prompt.(string)
return &Request{
Prompt: p,
MaxTokens: textRequest.MaxTokens,
Stream: textRequest.Stream,
Temperature: textRequest.Temperature,
}
}
func StreamHandler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
id := helper.GetResponseID(c)
responseModel := c.GetString(ctxkey.OriginalModel)
var responseText string
for scanner.Scan() {
data := scanner.Text()
if len(data) < len("data: ") {
continue
}
data = strings.TrimPrefix(data, "data: ")
data = strings.TrimSuffix(data, "\r")
if data == "[DONE]" {
break
}
var response openai.ChatCompletionsStreamResponse
err := json.Unmarshal([]byte(data), &response)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
for _, v := range response.Choices {
v.Delta.Role = "assistant"
responseText += v.Delta.StringContent()
}
response.Id = id
response.Model = modelName
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
usage := openai.ResponseText2Usage(responseText, responseModel, promptTokens)
return nil, usage
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var response openai.TextResponse
err = json.Unmarshal(responseBody, &response)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
response.Model = modelName
var responseText string
for _, v := range response.Choices {
responseText += v.Message.Content.(string)
}
usage := openai.ResponseText2Usage(responseText, modelName, promptTokens)
response.Usage = *usage
response.Id = helper.GetResponseID(c)
jsonResponse, err := json.Marshal(response)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, _ = c.Writer.Write(jsonResponse)
return nil, usage
}

View File

@@ -0,0 +1,13 @@
package cloudflare
import "github.com/songquanpeng/one-api/relay/model"
type Request struct {
Messages []model.Message `json:"messages,omitempty"`
Lora string `json:"lora,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
Prompt string `json:"prompt,omitempty"`
Raw bool `json:"raw,omitempty"`
Stream bool `json:"stream,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
}

View File

@@ -0,0 +1,64 @@
package cohere
import (
"errors"
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
type Adaptor struct{}
// ConvertImageRequest implements adaptor.Adaptor.
func (*Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
return nil, errors.New("not implemented")
}
// ConvertImageRequest implements adaptor.Adaptor.
func (a *Adaptor) Init(meta *meta.Meta) {
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return fmt.Sprintf("%s/v1/chat", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return ConvertRequest(*request), nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "Cohere"
}

View File

@@ -0,0 +1,14 @@
package cohere
var ModelList = []string{
"command", "command-nightly",
"command-light", "command-light-nightly",
"command-r", "command-r-plus",
}
func init() {
num := len(ModelList)
for i := 0; i < num; i++ {
ModelList = append(ModelList, ModelList[i]+"-internet")
}
}

View File

@@ -0,0 +1,228 @@
package cohere
import (
"bufio"
"encoding/json"
"fmt"
"github.com/songquanpeng/one-api/common/render"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
var (
WebSearchConnector = Connector{ID: "web-search"}
)
func stopReasonCohere2OpenAI(reason *string) string {
if reason == nil {
return ""
}
switch *reason {
case "COMPLETE":
return "stop"
default:
return *reason
}
}
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *Request {
cohereRequest := Request{
Model: textRequest.Model,
Message: "",
MaxTokens: textRequest.MaxTokens,
Temperature: textRequest.Temperature,
P: textRequest.TopP,
K: textRequest.TopK,
Stream: textRequest.Stream,
FrequencyPenalty: textRequest.FrequencyPenalty,
PresencePenalty: textRequest.PresencePenalty,
Seed: int(textRequest.Seed),
}
if cohereRequest.Model == "" {
cohereRequest.Model = "command-r"
}
if strings.HasSuffix(cohereRequest.Model, "-internet") {
cohereRequest.Model = strings.TrimSuffix(cohereRequest.Model, "-internet")
cohereRequest.Connectors = append(cohereRequest.Connectors, WebSearchConnector)
}
for _, message := range textRequest.Messages {
if message.Role == "user" {
cohereRequest.Message = message.Content.(string)
} else {
var role string
if message.Role == "assistant" {
role = "CHATBOT"
} else if message.Role == "system" {
role = "SYSTEM"
} else {
role = "USER"
}
cohereRequest.ChatHistory = append(cohereRequest.ChatHistory, ChatMessage{
Role: role,
Message: message.Content.(string),
})
}
}
return &cohereRequest
}
func StreamResponseCohere2OpenAI(cohereResponse *StreamResponse) (*openai.ChatCompletionsStreamResponse, *Response) {
var response *Response
var responseText string
var finishReason string
switch cohereResponse.EventType {
case "stream-start":
return nil, nil
case "text-generation":
responseText += cohereResponse.Text
case "stream-end":
usage := cohereResponse.Response.Meta.Tokens
response = &Response{
Meta: Meta{
Tokens: Usage{
InputTokens: usage.InputTokens,
OutputTokens: usage.OutputTokens,
},
},
}
finishReason = *cohereResponse.Response.FinishReason
default:
return nil, nil
}
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = responseText
choice.Delta.Role = "assistant"
if finishReason != "" {
choice.FinishReason = &finishReason
}
var openaiResponse openai.ChatCompletionsStreamResponse
openaiResponse.Object = "chat.completion.chunk"
openaiResponse.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &openaiResponse, response
}
func ResponseCohere2OpenAI(cohereResponse *Response) *openai.TextResponse {
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: cohereResponse.Text,
Name: nil,
},
FinishReason: stopReasonCohere2OpenAI(cohereResponse.FinishReason),
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", cohereResponse.ResponseID),
Model: "model",
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
createdTime := helper.GetTimestamp()
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
var usage model.Usage
for scanner.Scan() {
data := scanner.Text()
data = strings.TrimSuffix(data, "\r")
var cohereResponse StreamResponse
err := json.Unmarshal([]byte(data), &cohereResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
response, meta := StreamResponseCohere2OpenAI(&cohereResponse)
if meta != nil {
usage.PromptTokens += meta.Meta.Tokens.InputTokens
usage.CompletionTokens += meta.Meta.Tokens.OutputTokens
continue
}
if response == nil {
continue
}
response.Id = fmt.Sprintf("chatcmpl-%d", createdTime)
response.Model = c.GetString("original_model")
response.Created = createdTime
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &usage
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var cohereResponse Response
err = json.Unmarshal(responseBody, &cohereResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if cohereResponse.ResponseID == "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: cohereResponse.Message,
Type: cohereResponse.Message,
Param: "",
Code: resp.StatusCode,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := ResponseCohere2OpenAI(&cohereResponse)
fullTextResponse.Model = modelName
usage := model.Usage{
PromptTokens: cohereResponse.Meta.Tokens.InputTokens,
CompletionTokens: cohereResponse.Meta.Tokens.OutputTokens,
TotalTokens: cohereResponse.Meta.Tokens.InputTokens + cohereResponse.Meta.Tokens.OutputTokens,
}
fullTextResponse.Usage = usage
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &usage
}

View File

@@ -0,0 +1,147 @@
package cohere
type Request struct {
Message string `json:"message" required:"true"`
Model string `json:"model,omitempty"` // 默认值为"command-r"
Stream bool `json:"stream,omitempty"` // 默认值为false
Preamble string `json:"preamble,omitempty"`
ChatHistory []ChatMessage `json:"chat_history,omitempty"`
ConversationID string `json:"conversation_id,omitempty"`
PromptTruncation string `json:"prompt_truncation,omitempty"` // 默认值为"AUTO"
Connectors []Connector `json:"connectors,omitempty"`
Documents []Document `json:"documents,omitempty"`
Temperature *float64 `json:"temperature,omitempty"` // 默认值为0.3
MaxTokens int `json:"max_tokens,omitempty"`
MaxInputTokens int `json:"max_input_tokens,omitempty"`
K int `json:"k,omitempty"` // 默认值为0
P *float64 `json:"p,omitempty"` // 默认值为0.75
Seed int `json:"seed,omitempty"`
StopSequences []string `json:"stop_sequences,omitempty"`
FrequencyPenalty *float64 `json:"frequency_penalty,omitempty"` // 默认值为0.0
PresencePenalty *float64 `json:"presence_penalty,omitempty"` // 默认值为0.0
Tools []Tool `json:"tools,omitempty"`
ToolResults []ToolResult `json:"tool_results,omitempty"`
}
type ChatMessage struct {
Role string `json:"role" required:"true"`
Message string `json:"message" required:"true"`
}
type Tool struct {
Name string `json:"name" required:"true"`
Description string `json:"description" required:"true"`
ParameterDefinitions map[string]ParameterSpec `json:"parameter_definitions"`
}
type ParameterSpec struct {
Description string `json:"description"`
Type string `json:"type" required:"true"`
Required bool `json:"required"`
}
type ToolResult struct {
Call ToolCall `json:"call"`
Outputs []map[string]interface{} `json:"outputs"`
}
type ToolCall struct {
Name string `json:"name" required:"true"`
Parameters map[string]interface{} `json:"parameters" required:"true"`
}
type StreamResponse struct {
IsFinished bool `json:"is_finished"`
EventType string `json:"event_type"`
GenerationID string `json:"generation_id,omitempty"`
SearchQueries []*SearchQuery `json:"search_queries,omitempty"`
SearchResults []*SearchResult `json:"search_results,omitempty"`
Documents []*Document `json:"documents,omitempty"`
Text string `json:"text,omitempty"`
Citations []*Citation `json:"citations,omitempty"`
Response *Response `json:"response,omitempty"`
FinishReason string `json:"finish_reason,omitempty"`
}
type SearchQuery struct {
Text string `json:"text"`
GenerationID string `json:"generation_id"`
}
type SearchResult struct {
SearchQuery *SearchQuery `json:"search_query"`
DocumentIDs []string `json:"document_ids"`
Connector *Connector `json:"connector"`
}
type Connector struct {
ID string `json:"id"`
}
type Document struct {
ID string `json:"id"`
Snippet string `json:"snippet"`
Timestamp string `json:"timestamp"`
Title string `json:"title"`
URL string `json:"url"`
}
type Citation struct {
Start int `json:"start"`
End int `json:"end"`
Text string `json:"text"`
DocumentIDs []string `json:"document_ids"`
}
type Response struct {
ResponseID string `json:"response_id"`
Text string `json:"text"`
GenerationID string `json:"generation_id"`
ChatHistory []*Message `json:"chat_history"`
FinishReason *string `json:"finish_reason"`
Meta Meta `json:"meta"`
Citations []*Citation `json:"citations"`
Documents []*Document `json:"documents"`
SearchResults []*SearchResult `json:"search_results"`
SearchQueries []*SearchQuery `json:"search_queries"`
Message string `json:"message"`
}
type Message struct {
Role string `json:"role"`
Message string `json:"message"`
}
type Version struct {
Version string `json:"version"`
}
type Units struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
type ChatEntry struct {
Role string `json:"role"`
Message string `json:"message"`
}
type Meta struct {
APIVersion APIVersion `json:"api_version"`
BilledUnits BilledUnits `json:"billed_units"`
Tokens Usage `json:"tokens"`
}
type APIVersion struct {
Version string `json:"version"`
}
type BilledUnits struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
type Usage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}

59
relay/adaptor/common.go Normal file
View File

@@ -0,0 +1,59 @@
package adaptor
import (
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common/client"
"github.com/songquanpeng/one-api/common/ctxkey"
"github.com/songquanpeng/one-api/relay/meta"
)
func SetupCommonRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) {
req.Header.Set("Content-Type", c.Request.Header.Get("Content-Type"))
req.Header.Set("Accept", c.Request.Header.Get("Accept"))
if meta.IsStream && c.Request.Header.Get("Accept") == "" {
req.Header.Set("Accept", "text/event-stream")
}
}
func DoRequestHelper(a Adaptor, c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
fullRequestURL, err := a.GetRequestURL(meta)
if err != nil {
return nil, errors.Wrap(err, "get request url failed")
}
req, err := http.NewRequestWithContext(c.Request.Context(),
c.Request.Method, fullRequestURL, requestBody)
if err != nil {
return nil, errors.Wrap(err, "new request failed")
}
req.Header.Set("Content-Type", c.GetString(ctxkey.ContentType))
err = a.SetupRequestHeader(c, req, meta)
if err != nil {
return nil, errors.Wrap(err, "setup request header failed")
}
resp, err := DoRequest(c, req)
if err != nil {
return nil, errors.Wrap(err, "do request failed")
}
return resp, nil
}
func DoRequest(c *gin.Context, req *http.Request) (*http.Response, error) {
resp, err := client.HTTPClient.Do(req)
if err != nil {
return nil, err
}
if resp == nil {
return nil, errors.New("resp is nil")
}
_ = req.Body.Close()
_ = c.Request.Body.Close()
return resp, nil
}

View File

@@ -0,0 +1,76 @@
package coze
import (
"errors"
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
type Adaptor struct {
meta *meta.Meta
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.meta = meta
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return fmt.Sprintf("%s/open_api/v2/chat", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
request.User = a.meta.Config.UserID
return ConvertRequest(*request), nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
var responseText *string
if meta.IsStream {
err, responseText = StreamHandler(c, resp)
} else {
err, responseText = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
if responseText != nil {
usage = openai.ResponseText2Usage(*responseText, meta.ActualModelName, meta.PromptTokens)
} else {
usage = &model.Usage{}
}
usage.PromptTokens = meta.PromptTokens
usage.TotalTokens = usage.PromptTokens + usage.CompletionTokens
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "coze"
}

View File

@@ -0,0 +1,5 @@
package contenttype
const (
Text = "text"
)

View File

@@ -0,0 +1,7 @@
package event
const (
Message = "message"
Done = "done"
Error = "error"
)

View File

@@ -0,0 +1,6 @@
package messagetype
const (
Answer = "answer"
FollowUp = "follow_up"
)

View File

@@ -0,0 +1,3 @@
package coze
var ModelList = []string{}

View File

@@ -0,0 +1,10 @@
package coze
import "github.com/songquanpeng/one-api/relay/adaptor/coze/constant/event"
func event2StopReason(e *string) string {
if e == nil || *e == event.Message {
return ""
}
return "stop"
}

202
relay/adaptor/coze/main.go Normal file
View File

@@ -0,0 +1,202 @@
package coze
import (
"bufio"
"encoding/json"
"fmt"
"github.com/songquanpeng/one-api/common/render"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/conv"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/coze/constant/messagetype"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/model"
)
// https://www.coze.com/open
func stopReasonCoze2OpenAI(reason *string) string {
if reason == nil {
return ""
}
switch *reason {
case "end_turn":
return "stop"
case "stop_sequence":
return "stop"
case "max_tokens":
return "length"
default:
return *reason
}
}
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *Request {
cozeRequest := Request{
Stream: textRequest.Stream,
User: textRequest.User,
BotId: strings.TrimPrefix(textRequest.Model, "bot-"),
}
for i, message := range textRequest.Messages {
if i == len(textRequest.Messages)-1 {
cozeRequest.Query = message.StringContent()
continue
}
cozeMessage := Message{
Role: message.Role,
Content: message.StringContent(),
}
cozeRequest.ChatHistory = append(cozeRequest.ChatHistory, cozeMessage)
}
return &cozeRequest
}
func StreamResponseCoze2OpenAI(cozeResponse *StreamResponse) (*openai.ChatCompletionsStreamResponse, *Response) {
var response *Response
var stopReason string
var choice openai.ChatCompletionsStreamResponseChoice
if cozeResponse.Message != nil {
if cozeResponse.Message.Type != messagetype.Answer {
return nil, nil
}
choice.Delta.Content = cozeResponse.Message.Content
}
choice.Delta.Role = "assistant"
finishReason := stopReasonCoze2OpenAI(&stopReason)
if finishReason != "null" {
choice.FinishReason = &finishReason
}
var openaiResponse openai.ChatCompletionsStreamResponse
openaiResponse.Object = "chat.completion.chunk"
openaiResponse.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
openaiResponse.Id = cozeResponse.ConversationId
return &openaiResponse, response
}
func ResponseCoze2OpenAI(cozeResponse *Response) *openai.TextResponse {
var responseText string
for _, message := range cozeResponse.Messages {
if message.Type == messagetype.Answer {
responseText = message.Content
break
}
}
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: responseText,
Name: nil,
},
FinishReason: "stop",
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", cozeResponse.ConversationId),
Model: "coze-bot",
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *string) {
var responseText string
createdTime := helper.GetTimestamp()
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
var modelName string
for scanner.Scan() {
data := scanner.Text()
if len(data) < 5 || !strings.HasPrefix(data, "data:") {
continue
}
data = strings.TrimPrefix(data, "data:")
data = strings.TrimSuffix(data, "\r")
var cozeResponse StreamResponse
err := json.Unmarshal([]byte(data), &cozeResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
response, _ := StreamResponseCoze2OpenAI(&cozeResponse)
if response == nil {
continue
}
for _, choice := range response.Choices {
responseText += conv.AsString(choice.Delta.Content)
}
response.Model = modelName
response.Created = createdTime
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &responseText
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *string) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var cozeResponse Response
err = json.Unmarshal(responseBody, &cozeResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if cozeResponse.Code != 0 {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: cozeResponse.Msg,
Code: cozeResponse.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := ResponseCoze2OpenAI(&cozeResponse)
fullTextResponse.Model = modelName
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
var responseText string
if len(fullTextResponse.Choices) > 0 {
responseText = fullTextResponse.Choices[0].Message.StringContent()
}
return nil, &responseText
}

View File

@@ -0,0 +1,38 @@
package coze
type Message struct {
Role string `json:"role"`
Type string `json:"type"`
Content string `json:"content"`
ContentType string `json:"content_type"`
}
type ErrorInformation struct {
Code int `json:"code"`
Msg string `json:"msg"`
}
type Request struct {
ConversationId string `json:"conversation_id,omitempty"`
BotId string `json:"bot_id"`
User string `json:"user"`
Query string `json:"query"`
ChatHistory []Message `json:"chat_history,omitempty"`
Stream bool `json:"stream"`
}
type Response struct {
ConversationId string `json:"conversation_id,omitempty"`
Messages []Message `json:"messages,omitempty"`
Code int `json:"code,omitempty"`
Msg string `json:"msg,omitempty"`
}
type StreamResponse struct {
Event string `json:"event,omitempty"`
Message *Message `json:"message,omitempty"`
IsFinish bool `json:"is_finish,omitempty"`
Index int `json:"index,omitempty"`
ConversationId string `json:"conversation_id,omitempty"`
ErrorInformation *ErrorInformation `json:"error_information,omitempty"`
}

View File

@@ -0,0 +1,73 @@
package deepl
import (
"errors"
"fmt"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"io"
"net/http"
)
type Adaptor struct {
meta *meta.Meta
promptText string
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.meta = meta
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return fmt.Sprintf("%s/v2/translate", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "DeepL-Auth-Key "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
convertedRequest, text := ConvertRequest(*request)
a.promptText = text
return convertedRequest, nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err = StreamHandler(c, resp, meta.ActualModelName)
} else {
err = Handler(c, resp, meta.ActualModelName)
}
promptTokens := len(a.promptText)
usage = &model.Usage{
PromptTokens: promptTokens,
TotalTokens: promptTokens,
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "deepl"
}

View File

@@ -0,0 +1,9 @@
package deepl
// https://developers.deepl.com/docs/api-reference/glossaries
var ModelList = []string{
"deepl-zh",
"deepl-en",
"deepl-ja",
}

View File

@@ -0,0 +1,11 @@
package deepl
import "strings"
func parseLangFromModelName(modelName string) string {
parts := strings.Split(modelName, "-")
if len(parts) == 1 {
return "ZH"
}
return parts[1]
}

137
relay/adaptor/deepl/main.go Normal file
View File

@@ -0,0 +1,137 @@
package deepl
import (
"encoding/json"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/constant/finishreason"
"github.com/songquanpeng/one-api/relay/constant/role"
"github.com/songquanpeng/one-api/relay/model"
"io"
"net/http"
)
// https://developers.deepl.com/docs/getting-started/your-first-api-request
func ConvertRequest(textRequest model.GeneralOpenAIRequest) (*Request, string) {
var text string
if len(textRequest.Messages) != 0 {
text = textRequest.Messages[len(textRequest.Messages)-1].StringContent()
}
deeplRequest := Request{
TargetLang: parseLangFromModelName(textRequest.Model),
Text: []string{text},
}
return &deeplRequest, text
}
func StreamResponseDeepL2OpenAI(deeplResponse *Response) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
if len(deeplResponse.Translations) != 0 {
choice.Delta.Content = deeplResponse.Translations[0].Text
}
choice.Delta.Role = role.Assistant
choice.FinishReason = &constant.StopFinishReason
openaiResponse := openai.ChatCompletionsStreamResponse{
Object: constant.StreamObject,
Created: helper.GetTimestamp(),
Choices: []openai.ChatCompletionsStreamResponseChoice{choice},
}
return &openaiResponse
}
func ResponseDeepL2OpenAI(deeplResponse *Response) *openai.TextResponse {
var responseText string
if len(deeplResponse.Translations) != 0 {
responseText = deeplResponse.Translations[0].Text
}
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: role.Assistant,
Content: responseText,
Name: nil,
},
FinishReason: finishreason.Stop,
}
fullTextResponse := openai.TextResponse{
Object: constant.NonStreamObject,
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
}
return &fullTextResponse
}
func StreamHandler(c *gin.Context, resp *http.Response, modelName string) *model.ErrorWithStatusCode {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError)
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
}
var deeplResponse Response
err = json.Unmarshal(responseBody, &deeplResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
}
fullTextResponse := StreamResponseDeepL2OpenAI(&deeplResponse)
fullTextResponse.Model = modelName
fullTextResponse.Id = helper.GetResponseID(c)
jsonData, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError)
}
common.SetEventStreamHeaders(c)
c.Stream(func(w io.Writer) bool {
if jsonData != nil {
c.Render(-1, common.CustomEvent{Data: "data: " + string(jsonData)})
jsonData = nil
return true
}
c.Render(-1, common.CustomEvent{Data: "data: [DONE]"})
return false
})
_ = resp.Body.Close()
return nil
}
func Handler(c *gin.Context, resp *http.Response, modelName string) *model.ErrorWithStatusCode {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError)
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
}
var deeplResponse Response
err = json.Unmarshal(responseBody, &deeplResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
}
if deeplResponse.Message != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: deeplResponse.Message,
Code: "deepl_error",
},
StatusCode: resp.StatusCode,
}
}
fullTextResponse := ResponseDeepL2OpenAI(&deeplResponse)
fullTextResponse.Model = modelName
fullTextResponse.Id = helper.GetResponseID(c)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError)
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil
}

View File

@@ -0,0 +1,16 @@
package deepl
type Request struct {
Text []string `json:"text"`
TargetLang string `json:"target_lang"`
}
type Translation struct {
DetectedSourceLanguage string `json:"detected_source_language,omitempty"`
Text string `json:"text,omitempty"`
}
type Response struct {
Translations []Translation `json:"translations,omitempty"`
Message string `json:"message,omitempty"`
}

View File

@@ -0,0 +1,6 @@
package deepseek
var ModelList = []string{
"deepseek-chat",
"deepseek-coder",
}

View File

@@ -0,0 +1,13 @@
package doubao
// https://console.volcengine.com/ark/region:ark+cn-beijing/model
var ModelList = []string{
"Doubao-pro-128k",
"Doubao-pro-32k",
"Doubao-pro-4k",
"Doubao-lite-128k",
"Doubao-lite-32k",
"Doubao-lite-4k",
"Doubao-embedding",
}

View File

@@ -0,0 +1,18 @@
package doubao
import (
"fmt"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/relaymode"
)
func GetRequestURL(meta *meta.Meta) (string, error) {
switch meta.Mode {
case relaymode.ChatCompletions:
return fmt.Sprintf("%s/api/v3/chat/completions", meta.BaseURL), nil
case relaymode.Embeddings:
return fmt.Sprintf("%s/api/v3/embeddings", meta.BaseURL), nil
default:
}
return "", fmt.Errorf("unsupported relay mode %d for doubao", meta.Mode)
}

View File

@@ -0,0 +1,106 @@
package gemini
import (
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/helper"
channelhelper "github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
type Adaptor struct {
}
func (a *Adaptor) Init(meta *meta.Meta) {
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
var defaultVersion string
switch meta.ActualModelName {
case "gemini-2.0-flash-exp",
"gemini-2.0-flash-thinking-exp":
defaultVersion = "v1beta"
default:
defaultVersion = config.GeminiVersion
}
version := helper.AssignOrDefault(meta.Config.APIVersion, defaultVersion)
action := ""
switch meta.Mode {
case relaymode.Embeddings:
action = "batchEmbedContents"
default:
action = "generateContent"
}
if meta.IsStream {
action = "streamGenerateContent?alt=sse"
}
return fmt.Sprintf("%s/%s/models/%s:%s", meta.BaseURL, version, meta.ActualModelName, action), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
channelhelper.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("x-goog-api-key", meta.APIKey)
req.URL.Query().Add("key", meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
switch relayMode {
case relaymode.Embeddings:
geminiEmbeddingRequest := ConvertEmbeddingRequest(*request)
return geminiEmbeddingRequest, nil
default:
geminiRequest := ConvertRequest(*request)
return geminiRequest, nil
}
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return channelhelper.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
var responseText string
err, responseText = StreamHandler(c, resp)
usage = openai.ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
} else {
switch meta.Mode {
case relaymode.Embeddings:
err, usage = EmbeddingHandler(c, resp)
default:
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "google gemini"
}

View File

@@ -0,0 +1,11 @@
package gemini
// https://ai.google.dev/models/gemini
var ModelList = []string{
"gemini-pro", "gemini-1.0-pro",
"gemini-1.5-flash", "gemini-1.5-pro",
"text-embedding-004", "aqa",
"gemini-2.0-flash-exp",
"gemini-2.0-flash-thinking-exp",
}

View File

@@ -0,0 +1,445 @@
package gemini
import (
"bufio"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/random"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
)
// https://ai.google.dev/docs/gemini_api_overview?hl=zh-cn
const (
VisionMaxImageNum = 16
)
var mimeTypeMap = map[string]string{
"json_object": "application/json",
"text": "text/plain",
}
var toolChoiceTypeMap = map[string]string{
"none": "NONE",
"auto": "AUTO",
"required": "ANY",
}
// Setting safety to the lowest possible values since Gemini is already powerless enough
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *ChatRequest {
geminiRequest := ChatRequest{
Contents: make([]ChatContent, 0, len(textRequest.Messages)),
SafetySettings: []ChatSafetySettings{
{
Category: "HARM_CATEGORY_HARASSMENT",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_HATE_SPEECH",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_DANGEROUS_CONTENT",
Threshold: config.GeminiSafetySetting,
},
{
Category: "HARM_CATEGORY_CIVIC_INTEGRITY",
Threshold: config.GeminiSafetySetting,
},
},
GenerationConfig: ChatGenerationConfig{
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
MaxOutputTokens: textRequest.MaxTokens,
},
}
if textRequest.ResponseFormat != nil {
if mimeType, ok := mimeTypeMap[textRequest.ResponseFormat.Type]; ok {
geminiRequest.GenerationConfig.ResponseMimeType = mimeType
}
if textRequest.ResponseFormat.JsonSchema != nil {
geminiRequest.GenerationConfig.ResponseSchema = textRequest.ResponseFormat.JsonSchema.Schema
geminiRequest.GenerationConfig.ResponseMimeType = mimeTypeMap["json_object"]
}
}
if textRequest.Tools != nil {
functions := make([]model.Function, 0, len(textRequest.Tools))
for _, tool := range textRequest.Tools {
functions = append(functions, tool.Function)
}
geminiRequest.Tools = []ChatTools{
{
FunctionDeclarations: functions,
},
}
} else if textRequest.Functions != nil {
geminiRequest.Tools = []ChatTools{
{
FunctionDeclarations: textRequest.Functions,
},
}
}
if textRequest.ToolChoice != nil {
geminiRequest.ToolConfig = &ToolConfig{
FunctionCallingConfig: FunctionCallingConfig{
Mode: "auto",
},
}
switch mode := textRequest.ToolChoice.(type) {
case string:
geminiRequest.ToolConfig.FunctionCallingConfig.Mode = toolChoiceTypeMap[mode]
case map[string]interface{}:
geminiRequest.ToolConfig.FunctionCallingConfig.Mode = "ANY"
if fn, ok := mode["function"].(map[string]interface{}); ok {
if name, ok := fn["name"].(string); ok {
geminiRequest.ToolConfig.FunctionCallingConfig.AllowedFunctionNames = []string{name}
}
}
}
}
for _, message := range textRequest.Messages {
content := ChatContent{
Role: message.Role,
Parts: []Part{
{
Text: message.StringContent(),
},
},
}
openaiContent := message.ParseContent()
var parts []Part
imageNum := 0
for _, part := range openaiContent {
if part.Type == model.ContentTypeText {
parts = append(parts, Part{
Text: part.Text,
})
} else if part.Type == model.ContentTypeImageURL {
imageNum += 1
if imageNum > VisionMaxImageNum {
continue
}
mimeType, data, _ := image.GetImageFromUrl(part.ImageURL.Url)
parts = append(parts, Part{
InlineData: &InlineData{
MimeType: mimeType,
Data: data,
},
})
}
}
content.Parts = parts
// there's no assistant role in gemini and API shall vomit if Role is not user or model
if content.Role == "assistant" {
content.Role = "model"
}
// Converting system prompt to SystemInstructions
if content.Role == "system" {
geminiRequest.SystemInstruction = &content
continue
}
geminiRequest.Contents = append(geminiRequest.Contents, content)
}
return &geminiRequest
}
func ConvertEmbeddingRequest(request model.GeneralOpenAIRequest) *BatchEmbeddingRequest {
inputs := request.ParseInput()
requests := make([]EmbeddingRequest, len(inputs))
model := fmt.Sprintf("models/%s", request.Model)
for i, input := range inputs {
requests[i] = EmbeddingRequest{
Model: model,
Content: ChatContent{
Parts: []Part{
{
Text: input,
},
},
},
}
}
return &BatchEmbeddingRequest{
Requests: requests,
}
}
type ChatResponse struct {
Candidates []ChatCandidate `json:"candidates"`
PromptFeedback ChatPromptFeedback `json:"promptFeedback"`
}
func (g *ChatResponse) GetResponseText() string {
if g == nil {
return ""
}
var builder strings.Builder
for _, candidate := range g.Candidates {
for idx, part := range candidate.Content.Parts {
if idx > 0 {
builder.WriteString("\n")
}
builder.WriteString(part.Text)
}
}
return builder.String()
}
type ChatCandidate struct {
Content ChatContent `json:"content"`
FinishReason string `json:"finishReason"`
Index int64 `json:"index"`
SafetyRatings []ChatSafetyRating `json:"safetyRatings"`
}
type ChatSafetyRating struct {
Category string `json:"category"`
Probability string `json:"probability"`
}
type ChatPromptFeedback struct {
SafetyRatings []ChatSafetyRating `json:"safetyRatings"`
}
func getToolCalls(candidate *ChatCandidate) []model.Tool {
var toolCalls []model.Tool
item := candidate.Content.Parts[0]
if item.FunctionCall == nil {
return toolCalls
}
argsBytes, err := json.Marshal(item.FunctionCall.Arguments)
if err != nil {
logger.FatalLog("getToolCalls failed: " + err.Error())
return toolCalls
}
toolCall := model.Tool{
Id: fmt.Sprintf("call_%s", random.GetUUID()),
Type: "function",
Function: model.Function{
Arguments: string(argsBytes),
Name: item.FunctionCall.FunctionName,
},
}
toolCalls = append(toolCalls, toolCall)
return toolCalls
}
func responseGeminiChat2OpenAI(response *ChatResponse) *openai.TextResponse {
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: make([]openai.TextResponseChoice, 0, len(response.Candidates)),
}
for i, candidate := range response.Candidates {
choice := openai.TextResponseChoice{
Index: i,
Message: model.Message{
Role: "assistant",
},
FinishReason: constant.StopFinishReason,
}
if len(candidate.Content.Parts) > 0 {
if candidate.Content.Parts[0].FunctionCall != nil {
choice.Message.ToolCalls = getToolCalls(&candidate)
} else {
var builder strings.Builder
for idx, part := range candidate.Content.Parts {
if idx > 0 {
builder.WriteString("\n")
}
builder.WriteString(part.Text)
}
choice.Message.Content = builder.String()
}
} else {
choice.Message.Content = ""
choice.FinishReason = candidate.FinishReason
}
fullTextResponse.Choices = append(fullTextResponse.Choices, choice)
}
return &fullTextResponse
}
func streamResponseGeminiChat2OpenAI(geminiResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = geminiResponse.GetResponseText()
//choice.FinishReason = &constant.StopFinishReason
var response openai.ChatCompletionsStreamResponse
response.Id = fmt.Sprintf("chatcmpl-%s", random.GetUUID())
response.Created = helper.GetTimestamp()
response.Object = "chat.completion.chunk"
response.Model = "gemini"
response.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &response
}
func embeddingResponseGemini2OpenAI(response *EmbeddingResponse) *openai.EmbeddingResponse {
openAIEmbeddingResponse := openai.EmbeddingResponse{
Object: "list",
Data: make([]openai.EmbeddingResponseItem, 0, len(response.Embeddings)),
Model: "gemini-embedding",
Usage: model.Usage{TotalTokens: 0},
}
for _, item := range response.Embeddings {
openAIEmbeddingResponse.Data = append(openAIEmbeddingResponse.Data, openai.EmbeddingResponseItem{
Object: `embedding`,
Index: 0,
Embedding: item.Values,
})
}
return &openAIEmbeddingResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, string) {
responseText := ""
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
data = strings.TrimSpace(data)
if !strings.HasPrefix(data, "data: ") {
continue
}
data = strings.TrimPrefix(data, "data: ")
data = strings.TrimSuffix(data, "\"")
var geminiResponse ChatResponse
err := json.Unmarshal([]byte(data), &geminiResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
response := streamResponseGeminiChat2OpenAI(&geminiResponse)
if response == nil {
continue
}
responseText += response.Choices[0].Delta.StringContent()
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
}
return nil, responseText
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var geminiResponse ChatResponse
err = json.Unmarshal(responseBody, &geminiResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if len(geminiResponse.Candidates) == 0 {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: "No candidates returned",
Type: "server_error",
Param: "",
Code: 500,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseGeminiChat2OpenAI(&geminiResponse)
fullTextResponse.Model = modelName
completionTokens := openai.CountTokenText(geminiResponse.GetResponseText(), modelName)
usage := model.Usage{
PromptTokens: promptTokens,
CompletionTokens: completionTokens,
TotalTokens: promptTokens + completionTokens,
}
fullTextResponse.Usage = usage
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &usage
}
func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var geminiEmbeddingResponse EmbeddingResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &geminiEmbeddingResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if geminiEmbeddingResponse.Error != nil {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: geminiEmbeddingResponse.Error.Message,
Type: "gemini_error",
Param: "",
Code: geminiEmbeddingResponse.Error.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := embeddingResponseGemini2OpenAI(&geminiEmbeddingResponse)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}

View File

@@ -0,0 +1,87 @@
package gemini
type ChatRequest struct {
Contents []ChatContent `json:"contents"`
SystemInstruction *ChatContent `json:"system_instruction,omitempty"`
SafetySettings []ChatSafetySettings `json:"safety_settings,omitempty"`
GenerationConfig ChatGenerationConfig `json:"generation_config,omitempty"`
Tools []ChatTools `json:"tools,omitempty"`
ToolConfig *ToolConfig `json:"tool_config,omitempty"`
}
type EmbeddingRequest struct {
Model string `json:"model"`
Content ChatContent `json:"content"`
TaskType string `json:"taskType,omitempty"`
Title string `json:"title,omitempty"`
OutputDimensionality int `json:"outputDimensionality,omitempty"`
}
type BatchEmbeddingRequest struct {
Requests []EmbeddingRequest `json:"requests"`
}
type EmbeddingData struct {
Values []float64 `json:"values"`
}
type EmbeddingResponse struct {
Embeddings []EmbeddingData `json:"embeddings"`
Error *Error `json:"error,omitempty"`
}
type Error struct {
Code int `json:"code,omitempty"`
Message string `json:"message,omitempty"`
Status string `json:"status,omitempty"`
}
type InlineData struct {
MimeType string `json:"mimeType"`
Data string `json:"data"`
}
type FunctionCall struct {
FunctionName string `json:"name"`
Arguments any `json:"args"`
}
type Part struct {
Text string `json:"text,omitempty"`
InlineData *InlineData `json:"inlineData,omitempty"`
FunctionCall *FunctionCall `json:"functionCall,omitempty"`
}
type ChatContent struct {
Role string `json:"role,omitempty"`
Parts []Part `json:"parts"`
}
type ChatSafetySettings struct {
Category string `json:"category"`
Threshold string `json:"threshold"`
}
type ChatTools struct {
FunctionDeclarations any `json:"function_declarations,omitempty"`
}
type ChatGenerationConfig struct {
ResponseMimeType string `json:"responseMimeType,omitempty"`
ResponseSchema any `json:"responseSchema,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopP *float64 `json:"topP,omitempty"`
TopK float64 `json:"topK,omitempty"`
MaxOutputTokens int `json:"maxOutputTokens,omitempty"`
CandidateCount int `json:"candidateCount,omitempty"`
StopSequences []string `json:"stopSequences,omitempty"`
}
type FunctionCallingConfig struct {
Mode string `json:"mode,omitempty"`
AllowedFunctionNames []string `json:"allowed_function_names,omitempty"`
}
type ToolConfig struct {
FunctionCallingConfig FunctionCallingConfig `json:"function_calling_config"`
}

View File

@@ -0,0 +1,27 @@
package groq
// https://console.groq.com/docs/models
var ModelList = []string{
"gemma-7b-it",
"gemma2-9b-it",
"llama-3.1-70b-versatile",
"llama-3.1-8b-instant",
"llama-3.2-11b-text-preview",
"llama-3.2-11b-vision-preview",
"llama-3.2-1b-preview",
"llama-3.2-3b-preview",
"llama-3.2-11b-vision-preview",
"llama-3.2-90b-text-preview",
"llama-3.2-90b-vision-preview",
"llama-guard-3-8b",
"llama3-70b-8192",
"llama3-8b-8192",
"llama3-groq-70b-8192-tool-use-preview",
"llama3-groq-8b-8192-tool-use-preview",
"llava-v1.5-7b-4096-preview",
"mixtral-8x7b-32768",
"distil-whisper-large-v3-en",
"whisper-large-v3",
"whisper-large-v3-turbo",
}

View File

@@ -0,0 +1,21 @@
package adaptor
import (
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"io"
"net/http"
)
type Adaptor interface {
Init(meta *meta.Meta)
GetRequestURL(meta *meta.Meta) (string, error)
SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error
ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error)
ConvertImageRequest(c *gin.Context, request *model.ImageRequest) (any, error)
DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error)
DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode)
GetModelList() []string
GetChannelName() string
}

View File

@@ -0,0 +1,9 @@
package lingyiwanwu
// https://platform.lingyiwanwu.com/docs
var ModelList = []string{
"yi-34b-chat-0205",
"yi-34b-chat-200k",
"yi-vl-plus",
}

View File

@@ -0,0 +1,11 @@
package minimax
// https://www.minimaxi.com/document/guides/chat-model/V2?id=65e0736ab2845de20908e2dd
var ModelList = []string{
"abab6.5-chat",
"abab6.5s-chat",
"abab6-chat",
"abab5.5-chat",
"abab5.5s-chat",
}

View File

@@ -0,0 +1,14 @@
package minimax
import (
"fmt"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/relaymode"
)
func GetRequestURL(meta *meta.Meta) (string, error) {
if meta.Mode == relaymode.ChatCompletions {
return fmt.Sprintf("%s/v1/text/chatcompletion_v2", meta.BaseURL), nil
}
return "", fmt.Errorf("unsupported relay mode %d for minimax", meta.Mode)
}

View File

@@ -0,0 +1,10 @@
package mistral
var ModelList = []string{
"open-mistral-7b",
"open-mixtral-8x7b",
"mistral-small-latest",
"mistral-medium-latest",
"mistral-large-latest",
"mistral-embed",
}

View File

@@ -0,0 +1,7 @@
package moonshot
var ModelList = []string{
"moonshot-v1-8k",
"moonshot-v1-32k",
"moonshot-v1-128k",
}

View File

@@ -0,0 +1,19 @@
package novita
// https://novita.ai/llm-api
var ModelList = []string{
"meta-llama/llama-3-8b-instruct",
"meta-llama/llama-3-70b-instruct",
"nousresearch/hermes-2-pro-llama-3-8b",
"nousresearch/nous-hermes-llama2-13b",
"mistralai/mistral-7b-instruct",
"cognitivecomputations/dolphin-mixtral-8x22b",
"sao10k/l3-70b-euryale-v2.1",
"sophosympatheia/midnight-rose-70b",
"gryphe/mythomax-l2-13b",
"Nous-Hermes-2-Mixtral-8x7B-DPO",
"lzlv_70b",
"teknium/openhermes-2.5-mistral-7b",
"microsoft/wizardlm-2-8x22b",
}

View File

@@ -0,0 +1,15 @@
package novita
import (
"fmt"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/relaymode"
)
func GetRequestURL(meta *meta.Meta) (string, error) {
if meta.Mode == relaymode.ChatCompletions {
return fmt.Sprintf("%s/chat/completions", meta.BaseURL), nil
}
return "", fmt.Errorf("unsupported relay mode %d for novita", meta.Mode)
}

View File

@@ -0,0 +1,82 @@
package ollama
import (
"fmt"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
type Adaptor struct {
}
func (a *Adaptor) Init(meta *meta.Meta) {
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
// https://github.com/ollama/ollama/blob/main/docs/api.md
fullRequestURL := fmt.Sprintf("%s/api/chat", meta.BaseURL)
if meta.Mode == relaymode.Embeddings {
fullRequestURL = fmt.Sprintf("%s/api/embed", meta.BaseURL)
}
return fullRequestURL, nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
switch relayMode {
case relaymode.Embeddings:
ollamaEmbeddingRequest := ConvertEmbeddingRequest(*request)
return ollamaEmbeddingRequest, nil
default:
return ConvertRequest(*request), nil
}
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {
switch meta.Mode {
case relaymode.Embeddings:
err, usage = EmbeddingHandler(c, resp)
default:
err, usage = Handler(c, resp)
}
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "ollama"
}

View File

@@ -0,0 +1,11 @@
package ollama
var ModelList = []string{
"codellama:7b-instruct",
"llama2:7b",
"llama2:latest",
"llama3:latest",
"phi3:latest",
"qwen:0.5b-chat",
"qwen:7b",
}

View File

@@ -0,0 +1,264 @@
package ollama
import (
"bufio"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/random"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
)
func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
ollamaRequest := ChatRequest{
Model: request.Model,
Options: &Options{
Seed: int(request.Seed),
Temperature: request.Temperature,
TopP: request.TopP,
FrequencyPenalty: request.FrequencyPenalty,
PresencePenalty: request.PresencePenalty,
NumPredict: request.MaxTokens,
NumCtx: request.NumCtx,
},
Stream: request.Stream,
}
for _, message := range request.Messages {
openaiContent := message.ParseContent()
var imageUrls []string
var contentText string
for _, part := range openaiContent {
switch part.Type {
case model.ContentTypeText:
contentText = part.Text
case model.ContentTypeImageURL:
_, data, _ := image.GetImageFromUrl(part.ImageURL.Url)
imageUrls = append(imageUrls, data)
}
}
ollamaRequest.Messages = append(ollamaRequest.Messages, Message{
Role: message.Role,
Content: contentText,
Images: imageUrls,
})
}
return &ollamaRequest
}
func responseOllama2OpenAI(response *ChatResponse) *openai.TextResponse {
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: response.Message.Role,
Content: response.Message.Content,
},
}
if response.Done {
choice.FinishReason = "stop"
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Model: response.Model,
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
Usage: model.Usage{
PromptTokens: response.PromptEvalCount,
CompletionTokens: response.EvalCount,
TotalTokens: response.PromptEvalCount + response.EvalCount,
},
}
return &fullTextResponse
}
func streamResponseOllama2OpenAI(ollamaResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Role = ollamaResponse.Message.Role
choice.Delta.Content = ollamaResponse.Message.Content
if ollamaResponse.Done {
choice.FinishReason = &constant.StopFinishReason
}
response := openai.ChatCompletionsStreamResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion.chunk",
Created: helper.GetTimestamp(),
Model: ollamaResponse.Model,
Choices: []openai.ChatCompletionsStreamResponseChoice{choice},
}
return &response
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var usage model.Usage
scanner := bufio.NewScanner(resp.Body)
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
if atEOF && len(data) == 0 {
return 0, nil, nil
}
if i := strings.Index(string(data), "}\n"); i >= 0 {
return i + 2, data[0 : i+1], nil
}
if atEOF {
return len(data), data, nil
}
return 0, nil, nil
})
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
if strings.HasPrefix(data, "}") {
data = strings.TrimPrefix(data, "}") + "}"
}
var ollamaResponse ChatResponse
err := json.Unmarshal([]byte(data), &ollamaResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
if ollamaResponse.EvalCount != 0 {
usage.PromptTokens = ollamaResponse.PromptEvalCount
usage.CompletionTokens = ollamaResponse.EvalCount
usage.TotalTokens = ollamaResponse.PromptEvalCount + ollamaResponse.EvalCount
}
response := streamResponseOllama2OpenAI(&ollamaResponse)
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &usage
}
func ConvertEmbeddingRequest(request model.GeneralOpenAIRequest) *EmbeddingRequest {
return &EmbeddingRequest{
Model: request.Model,
Input: request.ParseInput(),
Options: &Options{
Seed: int(request.Seed),
Temperature: request.Temperature,
TopP: request.TopP,
FrequencyPenalty: request.FrequencyPenalty,
PresencePenalty: request.PresencePenalty,
},
}
}
func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var ollamaResponse EmbeddingResponse
err := json.NewDecoder(resp.Body).Decode(&ollamaResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
if ollamaResponse.Error != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: ollamaResponse.Error,
Type: "ollama_error",
Param: "",
Code: "ollama_error",
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := embeddingResponseOllama2OpenAI(&ollamaResponse)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}
func embeddingResponseOllama2OpenAI(response *EmbeddingResponse) *openai.EmbeddingResponse {
openAIEmbeddingResponse := openai.EmbeddingResponse{
Object: "list",
Data: make([]openai.EmbeddingResponseItem, 0, 1),
Model: response.Model,
Usage: model.Usage{TotalTokens: 0},
}
for i, embedding := range response.Embeddings {
openAIEmbeddingResponse.Data = append(openAIEmbeddingResponse.Data, openai.EmbeddingResponseItem{
Object: `embedding`,
Index: i,
Embedding: embedding,
})
}
return &openAIEmbeddingResponse
}
func Handler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
ctx := context.TODO()
var ollamaResponse ChatResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
logger.Debugf(ctx, "ollama response: %s", string(responseBody))
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &ollamaResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if ollamaResponse.Error != "" {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: ollamaResponse.Error,
Type: "ollama_error",
Param: "",
Code: "ollama_error",
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseOllama2OpenAI(&ollamaResponse)
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage
}

View File

@@ -0,0 +1,53 @@
package ollama
type Options struct {
Seed int `json:"seed,omitempty"`
Temperature *float64 `json:"temperature,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP *float64 `json:"top_p,omitempty"`
FrequencyPenalty *float64 `json:"frequency_penalty,omitempty"`
PresencePenalty *float64 `json:"presence_penalty,omitempty"`
NumPredict int `json:"num_predict,omitempty"`
NumCtx int `json:"num_ctx,omitempty"`
}
type Message struct {
Role string `json:"role,omitempty"`
Content string `json:"content,omitempty"`
Images []string `json:"images,omitempty"`
}
type ChatRequest struct {
Model string `json:"model,omitempty"`
Messages []Message `json:"messages,omitempty"`
Stream bool `json:"stream"`
Options *Options `json:"options,omitempty"`
}
type ChatResponse struct {
Model string `json:"model,omitempty"`
CreatedAt string `json:"created_at,omitempty"`
Message Message `json:"message,omitempty"`
Response string `json:"response,omitempty"` // for stream response
Done bool `json:"done,omitempty"`
TotalDuration int `json:"total_duration,omitempty"`
LoadDuration int `json:"load_duration,omitempty"`
PromptEvalCount int `json:"prompt_eval_count,omitempty"`
EvalCount int `json:"eval_count,omitempty"`
EvalDuration int `json:"eval_duration,omitempty"`
Error string `json:"error,omitempty"`
}
type EmbeddingRequest struct {
Model string `json:"model"`
Input []string `json:"input"`
// Truncate bool `json:"truncate,omitempty"`
Options *Options `json:"options,omitempty"`
// KeepAlive string `json:"keep_alive,omitempty"`
}
type EmbeddingResponse struct {
Error string `json:"error,omitempty"`
Model string `json:"model"`
Embeddings [][]float64 `json:"embeddings"`
}

View File

@@ -0,0 +1,155 @@
package openai
import (
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/doubao"
"github.com/songquanpeng/one-api/relay/adaptor/minimax"
"github.com/songquanpeng/one-api/relay/adaptor/novita"
"github.com/songquanpeng/one-api/relay/channeltype"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
type Adaptor struct {
ChannelType int
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.ChannelType = meta.ChannelType
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
switch meta.ChannelType {
case channeltype.Azure:
if meta.Mode == relaymode.ImagesGenerations {
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2024-03-01-preview
fullRequestURL := fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", meta.BaseURL, meta.ActualModelName, meta.Config.APIVersion)
return fullRequestURL, nil
}
// https://learn.microsoft.com/en-us/azure/cognitive-services/openai/chatgpt-quickstart?pivots=rest-api&tabs=command-line#rest-api
requestURL := strings.Split(meta.RequestURLPath, "?")[0]
requestURL = fmt.Sprintf("%s?api-version=%s", requestURL, meta.Config.APIVersion)
task := strings.TrimPrefix(requestURL, "/v1/")
model_ := meta.ActualModelName
model_ = strings.Replace(model_, ".", "", -1)
//https://github.com/songquanpeng/one-api/issues/1191
// {your endpoint}/openai/deployments/{your azure_model}/chat/completions?api-version={api_version}
requestURL = fmt.Sprintf("/openai/deployments/%s/%s", model_, task)
return GetFullRequestURL(meta.BaseURL, requestURL, meta.ChannelType), nil
case channeltype.Minimax:
return minimax.GetRequestURL(meta)
case channeltype.Doubao:
return doubao.GetRequestURL(meta)
case channeltype.Novita:
return novita.GetRequestURL(meta)
default:
return GetFullRequestURL(meta.BaseURL, meta.RequestURLPath, meta.ChannelType), nil
}
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
if meta.ChannelType == channeltype.Azure {
req.Header.Set("api-key", meta.APIKey)
return nil
}
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
if meta.ChannelType == channeltype.OpenRouter {
req.Header.Set("HTTP-Referer", "https://github.com/songquanpeng/one-api")
req.Header.Set("X-Title", "One API")
}
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
if config.EnforceIncludeUsage && request.Stream {
// always return usage in stream mode
if request.StreamOptions == nil {
request.StreamOptions = &model.StreamOptions{}
}
request.StreamOptions.IncludeUsage = true
}
// o1/o1-mini/o1-preview do not support system prompt and max_tokens
if strings.HasPrefix(request.Model, "o1") {
request.MaxTokens = 0
request.Messages = func(raw []model.Message) (filtered []model.Message) {
for i := range raw {
if raw[i].Role != "system" {
filtered = append(filtered, raw[i])
}
}
return
}(request.Messages)
}
if request.Stream && strings.HasPrefix(request.Model, "gpt-4o-audio") {
// TODO: Since it is not clear how to implement billing in stream mode,
// it is temporarily not supported
return nil, errors.New("stream mode is not supported for gpt-4o-audio")
}
return request, nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
var responseText string
err, responseText, usage = StreamHandler(c, resp, meta.Mode)
if usage == nil || usage.TotalTokens == 0 {
usage = ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
}
if usage.TotalTokens != 0 && usage.PromptTokens == 0 { // some channels don't return prompt tokens & completion tokens
usage.PromptTokens = meta.PromptTokens
usage.CompletionTokens = usage.TotalTokens - meta.PromptTokens
}
} else {
switch meta.Mode {
case relaymode.ImagesGenerations:
err, _ = ImageHandler(c, resp)
case relaymode.ImagesEdits:
err, _ = ImagesEditsHandler(c, resp)
default:
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
}
return
}
func (a *Adaptor) GetModelList() []string {
_, modelList := GetCompatibleChannelMeta(a.ChannelType)
return modelList
}
func (a *Adaptor) GetChannelName() string {
channelName, _ := GetCompatibleChannelMeta(a.ChannelType)
return channelName
}

View File

@@ -0,0 +1,74 @@
package openai
import (
"github.com/songquanpeng/one-api/relay/adaptor/ai360"
"github.com/songquanpeng/one-api/relay/adaptor/baichuan"
"github.com/songquanpeng/one-api/relay/adaptor/deepseek"
"github.com/songquanpeng/one-api/relay/adaptor/doubao"
"github.com/songquanpeng/one-api/relay/adaptor/groq"
"github.com/songquanpeng/one-api/relay/adaptor/lingyiwanwu"
"github.com/songquanpeng/one-api/relay/adaptor/minimax"
"github.com/songquanpeng/one-api/relay/adaptor/mistral"
"github.com/songquanpeng/one-api/relay/adaptor/moonshot"
"github.com/songquanpeng/one-api/relay/adaptor/novita"
"github.com/songquanpeng/one-api/relay/adaptor/siliconflow"
"github.com/songquanpeng/one-api/relay/adaptor/stepfun"
"github.com/songquanpeng/one-api/relay/adaptor/togetherai"
"github.com/songquanpeng/one-api/relay/adaptor/xai"
"github.com/songquanpeng/one-api/relay/channeltype"
)
var CompatibleChannels = []int{
channeltype.Azure,
channeltype.AI360,
channeltype.Moonshot,
channeltype.Baichuan,
channeltype.Minimax,
channeltype.Doubao,
channeltype.Mistral,
channeltype.Groq,
channeltype.LingYiWanWu,
channeltype.StepFun,
channeltype.DeepSeek,
channeltype.TogetherAI,
channeltype.Novita,
channeltype.SiliconFlow,
channeltype.XAI,
}
func GetCompatibleChannelMeta(channelType int) (string, []string) {
switch channelType {
case channeltype.Azure:
return "azure", ModelList
case channeltype.AI360:
return "360", ai360.ModelList
case channeltype.Moonshot:
return "moonshot", moonshot.ModelList
case channeltype.Baichuan:
return "baichuan", baichuan.ModelList
case channeltype.Minimax:
return "minimax", minimax.ModelList
case channeltype.Mistral:
return "mistralai", mistral.ModelList
case channeltype.Groq:
return "groq", groq.ModelList
case channeltype.LingYiWanWu:
return "lingyiwanwu", lingyiwanwu.ModelList
case channeltype.StepFun:
return "stepfun", stepfun.ModelList
case channeltype.DeepSeek:
return "deepseek", deepseek.ModelList
case channeltype.TogetherAI:
return "together.ai", togetherai.ModelList
case channeltype.Doubao:
return "doubao", doubao.ModelList
case channeltype.Novita:
return "novita", novita.ModelList
case channeltype.SiliconFlow:
return "siliconflow", siliconflow.ModelList
case channeltype.XAI:
return "xai", xai.ModelList
default:
return "openai", ModelList
}
}

View File

@@ -0,0 +1,25 @@
package openai
var ModelList = []string{
"gpt-3.5-turbo", "gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125",
"gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613",
"gpt-3.5-turbo-instruct",
"gpt-4", "gpt-4-0314", "gpt-4-0613", "gpt-4-1106-preview", "gpt-4-0125-preview",
"gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-0613",
"gpt-4-turbo-preview", "gpt-4-turbo", "gpt-4-turbo-2024-04-09",
"gpt-4o", "gpt-4o-2024-05-13", "gpt-4o-2024-08-06", "gpt-4o-2024-11-20", "chatgpt-4o-latest",
"gpt-4o-mini", "gpt-4o-mini-2024-07-18",
"gpt-4o-audio-preview", "gpt-4o-audio-preview-2024-12-17", "gpt-4o-audio-preview-2024-10-01",
"gpt-4-vision-preview",
"text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large",
"text-curie-001", "text-babbage-001", "text-ada-001", "text-davinci-002", "text-davinci-003",
"text-moderation-latest", "text-moderation-stable",
"text-davinci-edit-001",
"davinci-002", "babbage-002",
"dall-e-2", "dall-e-3",
"whisper-1",
"tts-1", "tts-1-1106", "tts-1-hd", "tts-1-hd-1106",
"o1", "o1-2024-12-17",
"o1-preview", "o1-preview-2024-09-12",
"o1-mini", "o1-mini-2024-09-12",
}

View File

@@ -0,0 +1,31 @@
package openai
import (
"fmt"
"strings"
"github.com/songquanpeng/one-api/relay/channeltype"
"github.com/songquanpeng/one-api/relay/model"
)
func ResponseText2Usage(responseText string, modelName string, promptTokens int) *model.Usage {
usage := &model.Usage{}
usage.PromptTokens = promptTokens
usage.CompletionTokens = CountTokenText(responseText, modelName)
usage.TotalTokens = usage.PromptTokens + usage.CompletionTokens
return usage
}
func GetFullRequestURL(baseURL string, requestURL string, channelType int) string {
fullRequestURL := fmt.Sprintf("%s%s", baseURL, requestURL)
if strings.HasPrefix(baseURL, "https://gateway.ai.cloudflare.com") {
switch channelType {
case channeltype.OpenAI:
fullRequestURL = fmt.Sprintf("%s%s", baseURL, strings.TrimPrefix(requestURL, "/v1"))
case channeltype.Azure:
fullRequestURL = fmt.Sprintf("%s%s", baseURL, strings.TrimPrefix(requestURL, "/openai/deployments"))
}
}
return fullRequestURL
}

View File

@@ -0,0 +1,62 @@
package openai
import (
"bytes"
"encoding/json"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/model"
)
// ImagesEditsHandler just copy response body to client
//
// https://platform.openai.com/docs/api-reference/images/createEdit
func ImagesEditsHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
c.Writer.WriteHeader(resp.StatusCode)
for k, v := range resp.Header {
c.Writer.Header().Set(k, v[0])
}
if _, err := io.Copy(c.Writer, resp.Body); err != nil {
return ErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError), nil
}
defer resp.Body.Close()
return nil, nil
}
func ImageHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var imageResponse ImageResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &imageResponse)
if err != nil {
return ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
resp.Body = io.NopCloser(bytes.NewBuffer(responseBody))
for k, v := range resp.Header {
c.Writer.Header().Set(k, v[0])
}
c.Writer.WriteHeader(resp.StatusCode)
_, err = io.Copy(c.Writer, resp.Body)
if err != nil {
return ErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
return nil, nil
}

View File

@@ -0,0 +1,173 @@
package openai
import (
"bufio"
"bytes"
"encoding/json"
"io"
"math"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/conv"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/billing/ratio"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
const (
dataPrefix = "data: "
done = "[DONE]"
dataPrefixLength = len(dataPrefix)
)
func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.ErrorWithStatusCode, string, *model.Usage) {
responseText := ""
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
var usage *model.Usage
common.SetEventStreamHeaders(c)
doneRendered := false
for scanner.Scan() {
data := scanner.Text()
if len(data) < dataPrefixLength { // ignore blank line or wrong format
continue
}
if data[:dataPrefixLength] != dataPrefix && data[:dataPrefixLength] != done {
continue
}
if strings.HasPrefix(data[dataPrefixLength:], done) {
render.StringData(c, data)
doneRendered = true
continue
}
switch relayMode {
case relaymode.ChatCompletions:
var streamResponse ChatCompletionsStreamResponse
err := json.Unmarshal([]byte(data[dataPrefixLength:]), &streamResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
render.StringData(c, data) // if error happened, pass the data to client
continue // just ignore the error
}
if len(streamResponse.Choices) == 0 && streamResponse.Usage == nil {
// but for empty choice and no usage, we should not pass it to client, this is for azure
continue // just ignore empty choice
}
render.StringData(c, data)
for _, choice := range streamResponse.Choices {
responseText += conv.AsString(choice.Delta.Content)
}
if streamResponse.Usage != nil {
usage = streamResponse.Usage
}
case relaymode.Completions:
render.StringData(c, data)
var streamResponse CompletionsStreamResponse
err := json.Unmarshal([]byte(data[dataPrefixLength:]), &streamResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
for _, choice := range streamResponse.Choices {
responseText += choice.Text
}
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
if !doneRendered {
render.Done(c)
}
err := resp.Body.Close()
if err != nil {
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), "", nil
}
return nil, responseText, usage
}
// Handler handles the non-stream response from OpenAI API
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
var textResponse SlimTextResponse
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &textResponse)
if err != nil {
return ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if textResponse.Error.Type != "" {
return &model.ErrorWithStatusCode{
Error: textResponse.Error,
StatusCode: resp.StatusCode,
}, nil
}
// Reset response body
resp.Body = io.NopCloser(bytes.NewBuffer(responseBody))
logger.Debugf(c.Request.Context(), "handler response: %s", string(responseBody))
// We shouldn't set the header before we parse the response body, because the parse part may fail.
// And then we will have to send an error response, but in this case, the header has already been set.
// So the HTTPClient will be confused by the response.
// For example, Postman will report error, and we cannot check the response at all.
for k, v := range resp.Header {
c.Writer.Header().Set(k, v[0])
}
c.Writer.WriteHeader(resp.StatusCode)
_, err = io.Copy(c.Writer, resp.Body)
if err != nil {
return ErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
if textResponse.Usage.TotalTokens == 0 || (textResponse.Usage.PromptTokens == 0 && textResponse.Usage.CompletionTokens == 0) {
completionTokens := 0
for _, choice := range textResponse.Choices {
completionTokens += CountTokenText(choice.Message.StringContent(), modelName)
}
textResponse.Usage = model.Usage{
PromptTokens: promptTokens,
CompletionTokens: completionTokens,
TotalTokens: promptTokens + completionTokens,
}
} else if textResponse.PromptTokensDetails.AudioTokens+textResponse.CompletionTokensDetails.AudioTokens > 0 {
// Convert the more expensive audio tokens to uniformly priced text tokens.
// Note that when there are no audio tokens in prompt and completion,
// OpenAI will return empty PromptTokensDetails and CompletionTokensDetails, which can be misleading.
textResponse.Usage.PromptTokens = textResponse.PromptTokensDetails.TextTokens +
int(math.Ceil(
float64(textResponse.PromptTokensDetails.AudioTokens)*
ratio.GetAudioPromptRatio(modelName),
))
textResponse.Usage.CompletionTokens = textResponse.CompletionTokensDetails.TextTokens +
int(math.Ceil(
float64(textResponse.CompletionTokensDetails.AudioTokens)*
ratio.GetAudioPromptRatio(modelName)*ratio.GetAudioCompletionRatio(modelName),
))
textResponse.Usage.TotalTokens = textResponse.Usage.PromptTokens +
textResponse.Usage.CompletionTokens
}
return nil, &textResponse.Usage
}

View File

@@ -0,0 +1,167 @@
package openai
import (
"mime/multipart"
"github.com/songquanpeng/one-api/relay/model"
)
type TextContent struct {
Type string `json:"type,omitempty"`
Text string `json:"text,omitempty"`
}
type ImageContent struct {
Type string `json:"type,omitempty"`
ImageURL *model.ImageURL `json:"image_url,omitempty"`
}
type ChatRequest struct {
Model string `json:"model"`
Messages []model.Message `json:"messages"`
MaxTokens int `json:"max_tokens"`
}
type TextRequest struct {
Model string `json:"model"`
Messages []model.Message `json:"messages"`
Prompt string `json:"prompt"`
MaxTokens int `json:"max_tokens"`
//Stream bool `json:"stream"`
}
// ImageRequest docs: https://platform.openai.com/docs/api-reference/images/create
type ImageRequest struct {
Model string `json:"model"`
Prompt string `json:"prompt" binding:"required"`
N int `json:"n,omitempty"`
Size string `json:"size,omitempty"`
Quality string `json:"quality,omitempty"`
ResponseFormat string `json:"response_format,omitempty"`
Style string `json:"style,omitempty"`
User string `json:"user,omitempty"`
}
type WhisperJSONResponse struct {
Text string `json:"text,omitempty"`
}
type WhisperVerboseJSONResponse struct {
Task string `json:"task,omitempty"`
Language string `json:"language,omitempty"`
Duration float64 `json:"duration,omitempty"`
Text string `json:"text,omitempty"`
Segments []Segment `json:"segments,omitempty"`
}
type Segment struct {
Id int `json:"id"`
Seek int `json:"seek"`
Start float64 `json:"start"`
End float64 `json:"end"`
Text string `json:"text"`
Tokens []int `json:"tokens"`
Temperature float64 `json:"temperature"`
AvgLogprob float64 `json:"avg_logprob"`
CompressionRatio float64 `json:"compression_ratio"`
NoSpeechProb float64 `json:"no_speech_prob"`
}
type TextToSpeechRequest struct {
Model string `json:"model" binding:"required"`
Input string `json:"input" binding:"required"`
Voice string `json:"voice" binding:"required"`
Speed float64 `json:"speed"`
ResponseFormat string `json:"response_format"`
}
type AudioTranscriptionRequest struct {
File *multipart.FileHeader `form:"file" binding:"required"`
Model string `form:"model" binding:"required"`
Language string `form:"language"`
Prompt string `form:"prompt"`
ReponseFormat string `form:"response_format" binding:"oneof=json text srt verbose_json vtt"`
Temperature float64 `form:"temperature"`
TimestampGranularity []string `form:"timestamp_granularity"`
}
type AudioTranslationRequest struct {
File *multipart.FileHeader `form:"file" binding:"required"`
Model string `form:"model" binding:"required"`
Prompt string `form:"prompt"`
ResponseFormat string `form:"response_format" binding:"oneof=json text srt verbose_json vtt"`
Temperature float64 `form:"temperature"`
}
type UsageOrResponseText struct {
*model.Usage
ResponseText string
}
type SlimTextResponse struct {
Choices []TextResponseChoice `json:"choices"`
model.Usage `json:"usage"`
Error model.Error `json:"error"`
}
type TextResponseChoice struct {
Index int `json:"index"`
model.Message `json:"message"`
FinishReason string `json:"finish_reason"`
}
type TextResponse struct {
Id string `json:"id"`
Model string `json:"model,omitempty"`
Object string `json:"object"`
Created int64 `json:"created"`
Choices []TextResponseChoice `json:"choices"`
model.Usage `json:"usage"`
}
type EmbeddingResponseItem struct {
Object string `json:"object"`
Index int `json:"index"`
Embedding []float64 `json:"embedding"`
}
type EmbeddingResponse struct {
Object string `json:"object"`
Data []EmbeddingResponseItem `json:"data"`
Model string `json:"model"`
model.Usage `json:"usage"`
}
type ImageData struct {
Url string `json:"url,omitempty"`
B64Json string `json:"b64_json,omitempty"`
RevisedPrompt string `json:"revised_prompt,omitempty"`
}
type ImageResponse struct {
Created int64 `json:"created"`
Data []ImageData `json:"data"`
//model.Usage `json:"usage"`
}
type ChatCompletionsStreamResponseChoice struct {
Index int `json:"index"`
Delta model.Message `json:"delta"`
FinishReason *string `json:"finish_reason,omitempty"`
}
type ChatCompletionsStreamResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Model string `json:"model"`
Choices []ChatCompletionsStreamResponseChoice `json:"choices"`
Usage *model.Usage `json:"usage,omitempty"`
}
type CompletionsStreamResponse struct {
Choices []struct {
Text string `json:"text"`
FinishReason string `json:"finish_reason"`
} `json:"choices"`
}

View File

@@ -0,0 +1,287 @@
package openai
import (
"bytes"
"context"
"encoding/base64"
"fmt"
"math"
"strings"
"github.com/pkg/errors"
"github.com/pkoukk/tiktoken-go"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/billing/ratio"
billingratio "github.com/songquanpeng/one-api/relay/billing/ratio"
"github.com/songquanpeng/one-api/relay/model"
)
// tokenEncoderMap won't grow after initialization
var tokenEncoderMap = map[string]*tiktoken.Tiktoken{}
var defaultTokenEncoder *tiktoken.Tiktoken
func InitTokenEncoders() {
logger.SysLog("initializing token encoders")
gpt35TokenEncoder, err := tiktoken.EncodingForModel("gpt-3.5-turbo")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-3.5-turbo token encoder: %s", err.Error()))
}
defaultTokenEncoder = gpt35TokenEncoder
gpt4oTokenEncoder, err := tiktoken.EncodingForModel("gpt-4o")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-4o token encoder: %s", err.Error()))
}
gpt4TokenEncoder, err := tiktoken.EncodingForModel("gpt-4")
if err != nil {
logger.FatalLog(fmt.Sprintf("failed to get gpt-4 token encoder: %s", err.Error()))
}
for model := range billingratio.ModelRatio {
if strings.HasPrefix(model, "gpt-3.5") {
tokenEncoderMap[model] = gpt35TokenEncoder
} else if strings.HasPrefix(model, "gpt-4o") {
tokenEncoderMap[model] = gpt4oTokenEncoder
} else if strings.HasPrefix(model, "gpt-4") {
tokenEncoderMap[model] = gpt4TokenEncoder
} else {
tokenEncoderMap[model] = nil
}
}
logger.SysLog("token encoders initialized")
}
func getTokenEncoder(model string) *tiktoken.Tiktoken {
tokenEncoder, ok := tokenEncoderMap[model]
if ok && tokenEncoder != nil {
return tokenEncoder
}
if ok {
tokenEncoder, err := tiktoken.EncodingForModel(model)
if err != nil {
logger.SysError(fmt.Sprintf("failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo", model, err.Error()))
tokenEncoder = defaultTokenEncoder
}
tokenEncoderMap[model] = tokenEncoder
return tokenEncoder
}
return defaultTokenEncoder
}
func getTokenNum(tokenEncoder *tiktoken.Tiktoken, text string) int {
if config.ApproximateTokenEnabled {
return int(float64(len(text)) * 0.38)
}
return len(tokenEncoder.Encode(text, nil, nil))
}
func CountTokenMessages(ctx context.Context,
messages []model.Message, actualModel string) int {
tokenEncoder := getTokenEncoder(actualModel)
// Reference:
// https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
// https://github.com/pkoukk/tiktoken-go/issues/6
//
// Every message follows <|start|>{role/name}\n{content}<|end|>\n
var tokensPerMessage int
var tokensPerName int
if actualModel == "gpt-3.5-turbo-0301" {
tokensPerMessage = 4
tokensPerName = -1 // If there's a name, the role is omitted
} else {
tokensPerMessage = 3
tokensPerName = 1
}
tokenNum := 0
for _, message := range messages {
tokenNum += tokensPerMessage
contents := message.ParseContent()
for _, content := range contents {
switch content.Type {
case model.ContentTypeText:
tokenNum += getTokenNum(tokenEncoder, content.Text)
case model.ContentTypeImageURL:
imageTokens, err := countImageTokens(
content.ImageURL.Url,
content.ImageURL.Detail,
actualModel)
if err != nil {
logger.SysError("error counting image tokens: " + err.Error())
} else {
tokenNum += imageTokens
}
case model.ContentTypeInputAudio:
audioData, err := base64.StdEncoding.DecodeString(content.InputAudio.Data)
if err != nil {
logger.SysError("error decoding audio data: " + err.Error())
}
tokens, err := helper.GetAudioTokens(ctx,
bytes.NewReader(audioData),
ratio.GetAudioPromptTokensPerSecond(actualModel))
if err != nil {
logger.SysError("error counting audio tokens: " + err.Error())
} else {
tokenNum += tokens
}
}
}
tokenNum += getTokenNum(tokenEncoder, message.Role)
if message.Name != nil {
tokenNum += tokensPerName
tokenNum += getTokenNum(tokenEncoder, *message.Name)
}
}
tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|>
return tokenNum
}
// func countVisonTokenMessages(messages []VisionMessage, model string) (int, error) {
// tokenEncoder := getTokenEncoder(model)
// // Reference:
// // https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
// // https://github.com/pkoukk/tiktoken-go/issues/6
// //
// // Every message follows <|start|>{role/name}\n{content}<|end|>\n
// var tokensPerMessage int
// var tokensPerName int
// if model == "gpt-3.5-turbo-0301" {
// tokensPerMessage = 4
// tokensPerName = -1 // If there's a name, the role is omitted
// } else {
// tokensPerMessage = 3
// tokensPerName = 1
// }
// tokenNum := 0
// for _, message := range messages {
// tokenNum += tokensPerMessage
// for _, cnt := range message.Content {
// switch cnt.Type {
// case OpenaiVisionMessageContentTypeText:
// tokenNum += getTokenNum(tokenEncoder, cnt.Text)
// case OpenaiVisionMessageContentTypeImageUrl:
// imgblob, err := base64.StdEncoding.DecodeString(strings.TrimPrefix(cnt.ImageUrl.URL, "data:image/jpeg;base64,"))
// if err != nil {
// return 0, errors.Wrap(err, "failed to decode base64 image")
// }
// if imgtoken, err := CountVisionImageToken(imgblob, cnt.ImageUrl.Detail); err != nil {
// return 0, errors.Wrap(err, "failed to count vision image token")
// } else {
// tokenNum += imgtoken
// }
// }
// }
// tokenNum += getTokenNum(tokenEncoder, message.Role)
// if message.Name != nil {
// tokenNum += tokensPerName
// tokenNum += getTokenNum(tokenEncoder, *message.Name)
// }
// }
// tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|>
// return tokenNum, nil
// }
const (
lowDetailCost = 85
highDetailCostPerTile = 170
additionalCost = 85
// gpt-4o-mini cost higher than other model
gpt4oMiniLowDetailCost = 2833
gpt4oMiniHighDetailCost = 5667
gpt4oMiniAdditionalCost = 2833
)
// https://platform.openai.com/docs/guides/vision/calculating-costs
// https://github.com/openai/openai-cookbook/blob/05e3f9be4c7a2ae7ecf029a7c32065b024730ebe/examples/How_to_count_tokens_with_tiktoken.ipynb
func countImageTokens(url string, detail string, model string) (_ int, err error) {
var fetchSize = true
var width, height int
// Reference: https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding
// detail == "auto" is undocumented on how it works, it just said the model will use the auto setting which will look at the image input size and decide if it should use the low or high setting.
// According to the official guide, "low" disable the high-res model,
// and only receive low-res 512px x 512px version of the image, indicating
// that image is treated as low-res when size is smaller than 512px x 512px,
// then we can assume that image size larger than 512px x 512px is treated
// as high-res. Then we have the following logic:
// if detail == "" || detail == "auto" {
// width, height, err = image.GetImageSize(url)
// if err != nil {
// return 0, err
// }
// fetchSize = false
// // not sure if this is correct
// if width > 512 || height > 512 {
// detail = "high"
// } else {
// detail = "low"
// }
// }
// However, in my test, it seems to be always the same as "high".
// The following image, which is 125x50, is still treated as high-res, taken
// 255 tokens in the response of non-stream chat completion api.
// https://upload.wikimedia.org/wikipedia/commons/1/10/18_Infantry_Division_Messina.jpg
if detail == "" || detail == "auto" {
// assume by test, not sure if this is correct
detail = "high"
}
switch detail {
case "low":
if strings.HasPrefix(model, "gpt-4o-mini") {
return gpt4oMiniLowDetailCost, nil
}
return lowDetailCost, nil
case "high":
if fetchSize {
width, height, err = image.GetImageSize(url)
if err != nil {
return 0, err
}
}
if width > 2048 || height > 2048 { // max(width, height) > 2048
ratio := float64(2048) / math.Max(float64(width), float64(height))
width = int(float64(width) * ratio)
height = int(float64(height) * ratio)
}
if width > 768 && height > 768 { // min(width, height) > 768
ratio := float64(768) / math.Min(float64(width), float64(height))
width = int(float64(width) * ratio)
height = int(float64(height) * ratio)
}
numSquares := int(math.Ceil(float64(width)/512) * math.Ceil(float64(height)/512))
if strings.HasPrefix(model, "gpt-4o-mini") {
return numSquares*gpt4oMiniHighDetailCost + gpt4oMiniAdditionalCost, nil
}
result := numSquares*highDetailCostPerTile + additionalCost
return result, nil
default:
return 0, errors.New("invalid detail option")
}
}
func CountTokenInput(input any, model string) int {
switch v := input.(type) {
case string:
return CountTokenText(v, model)
case []string:
text := ""
for _, s := range v {
text += s
}
return CountTokenText(text, model)
}
return 0
}
func CountTokenText(text string, model string) int {
tokenEncoder := getTokenEncoder(model)
return getTokenNum(tokenEncoder, text)
}
func CountToken(text string) int {
return CountTokenInput(text, "gpt-3.5-turbo")
}

View File

@@ -0,0 +1,23 @@
package openai
import (
"context"
"fmt"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/model"
)
func ErrorWrapper(err error, code string, statusCode int) *model.ErrorWithStatusCode {
logger.Error(context.TODO(), fmt.Sprintf("[%s]%+v", code, err))
Error := model.Error{
Message: err.Error(),
Type: "one_api_error",
Code: code,
}
return &model.ErrorWithStatusCode{
Error: Error,
StatusCode: statusCode,
}
}

View File

@@ -0,0 +1,67 @@
package palm
import (
"fmt"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"io"
"net/http"
)
type Adaptor struct {
}
func (a *Adaptor) Init(meta *meta.Meta) {
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return fmt.Sprintf("%s/v1beta2/models/chat-bison-001:generateMessage", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("x-goog-api-key", meta.APIKey)
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return ConvertRequest(*request), nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
var responseText string
err, responseText = StreamHandler(c, resp)
usage = openai.ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
} else {
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "google palm"
}

View File

@@ -0,0 +1,5 @@
package palm
var ModelList = []string{
"PaLM-2",
}

View File

@@ -0,0 +1,40 @@
package palm
import (
"github.com/songquanpeng/one-api/relay/model"
)
type ChatMessage struct {
Author string `json:"author"`
Content string `json:"content"`
}
type Filter struct {
Reason string `json:"reason"`
Message string `json:"message"`
}
type Prompt struct {
Messages []ChatMessage `json:"messages"`
}
type ChatRequest struct {
Prompt Prompt `json:"prompt"`
Temperature *float64 `json:"temperature,omitempty"`
CandidateCount int `json:"candidateCount,omitempty"`
TopP *float64 `json:"topP,omitempty"`
TopK int `json:"topK,omitempty"`
}
type Error struct {
Code int `json:"code"`
Message string `json:"message"`
Status string `json:"status"`
}
type ChatResponse struct {
Candidates []ChatMessage `json:"candidates"`
Messages []model.Message `json:"messages"`
Filters []Filter `json:"filters"`
Error Error `json:"error"`
}

172
relay/adaptor/palm/palm.go Normal file
View File

@@ -0,0 +1,172 @@
package palm
import (
"encoding/json"
"fmt"
"github.com/songquanpeng/one-api/common/render"
"io"
"net/http"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/random"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
)
// https://developers.generativeai.google/api/rest/generativelanguage/models/generateMessage#request-body
// https://developers.generativeai.google/api/rest/generativelanguage/models/generateMessage#response-body
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *ChatRequest {
palmRequest := ChatRequest{
Prompt: Prompt{
Messages: make([]ChatMessage, 0, len(textRequest.Messages)),
},
Temperature: textRequest.Temperature,
CandidateCount: textRequest.N,
TopP: textRequest.TopP,
TopK: textRequest.MaxTokens,
}
for _, message := range textRequest.Messages {
palmMessage := ChatMessage{
Content: message.StringContent(),
}
if message.Role == "user" {
palmMessage.Author = "0"
} else {
palmMessage.Author = "1"
}
palmRequest.Prompt.Messages = append(palmRequest.Prompt.Messages, palmMessage)
}
return &palmRequest
}
func responsePaLM2OpenAI(response *ChatResponse) *openai.TextResponse {
fullTextResponse := openai.TextResponse{
Choices: make([]openai.TextResponseChoice, 0, len(response.Candidates)),
}
for i, candidate := range response.Candidates {
choice := openai.TextResponseChoice{
Index: i,
Message: model.Message{
Role: "assistant",
Content: candidate.Content,
},
FinishReason: "stop",
}
fullTextResponse.Choices = append(fullTextResponse.Choices, choice)
}
return &fullTextResponse
}
func streamResponsePaLM2OpenAI(palmResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
var choice openai.ChatCompletionsStreamResponseChoice
if len(palmResponse.Candidates) > 0 {
choice.Delta.Content = palmResponse.Candidates[0].Content
}
choice.FinishReason = &constant.StopFinishReason
var response openai.ChatCompletionsStreamResponse
response.Object = "chat.completion.chunk"
response.Model = "palm2"
response.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &response
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, string) {
responseText := ""
responseId := fmt.Sprintf("chatcmpl-%s", random.GetUUID())
createdTime := helper.GetTimestamp()
common.SetEventStreamHeaders(c)
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
logger.SysError("error reading stream response: " + err.Error())
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
}
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), ""
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
}
var palmResponse ChatResponse
err = json.Unmarshal(responseBody, &palmResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), ""
}
fullTextResponse := streamResponsePaLM2OpenAI(&palmResponse)
fullTextResponse.Id = responseId
fullTextResponse.Created = createdTime
if len(palmResponse.Candidates) > 0 {
responseText = palmResponse.Candidates[0].Content
}
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
logger.SysError("error marshalling stream response: " + err.Error())
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), ""
}
err = render.ObjectData(c, string(jsonResponse))
if err != nil {
logger.SysError(err.Error())
}
render.Done(c)
return nil, responseText
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
var palmResponse ChatResponse
err = json.Unmarshal(responseBody, &palmResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
if palmResponse.Error.Code != 0 || len(palmResponse.Candidates) == 0 {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: palmResponse.Error.Message,
Type: palmResponse.Error.Status,
Param: "",
Code: palmResponse.Error.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responsePaLM2OpenAI(&palmResponse)
fullTextResponse.Model = modelName
completionTokens := openai.CountTokenText(palmResponse.Candidates[0].Content, modelName)
usage := model.Usage{
PromptTokens: promptTokens,
CompletionTokens: completionTokens,
TotalTokens: promptTokens + completionTokens,
}
fullTextResponse.Usage = usage
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
return nil, &usage
}

View File

@@ -0,0 +1,89 @@
package proxy
import (
"fmt"
"io"
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/adaptor"
channelhelper "github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
relaymodel "github.com/songquanpeng/one-api/relay/model"
)
var _ adaptor.Adaptor = new(Adaptor)
const channelName = "proxy"
type Adaptor struct{}
func (a *Adaptor) Init(meta *meta.Meta) {
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
return nil, errors.New("notimplement")
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
for k, v := range resp.Header {
for _, vv := range v {
c.Writer.Header().Set(k, vv)
}
}
c.Writer.WriteHeader(resp.StatusCode)
if _, gerr := io.Copy(c.Writer, resp.Body); gerr != nil {
return nil, &relaymodel.ErrorWithStatusCode{
StatusCode: http.StatusInternalServerError,
Error: relaymodel.Error{
Message: gerr.Error(),
},
}
}
return nil, nil
}
func (a *Adaptor) GetModelList() (models []string) {
return nil
}
func (a *Adaptor) GetChannelName() string {
return channelName
}
// GetRequestURL remove static prefix, and return the real request url to the upstream service
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
prefix := fmt.Sprintf("/v1/oneapi/proxy/%d", meta.ChannelId)
return meta.BaseURL + strings.TrimPrefix(meta.RequestURLPath, prefix), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
for k, v := range c.Request.Header {
req.Header.Set(k, v[0])
}
// remove unnecessary headers
req.Header.Del("Host")
req.Header.Del("Content-Length")
req.Header.Del("Accept-Encoding")
req.Header.Del("Connection")
// set authorization header
req.Header.Set("Authorization", meta.APIKey)
return nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
return nil, errors.Errorf("not implement")
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return channelhelper.DoRequestHelper(a, c, meta, requestBody)
}

View File

@@ -0,0 +1,180 @@
package replicate
import (
"bytes"
"fmt"
"io"
"net/http"
"slices"
"strings"
"time"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/relaymode"
)
type Adaptor struct {
meta *meta.Meta
}
// ConvertImageRequest implements adaptor.Adaptor.
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
return nil, errors.New("should call replicate.ConvertImageRequest instead")
}
func ConvertImageRequest(c *gin.Context, request *model.ImageRequest) (any, error) {
meta := meta.GetByContext(c)
if request.ResponseFormat != "b64_json" {
return nil, errors.New("only support b64_json response format")
}
if request.N != 1 && request.N != 0 {
return nil, errors.New("only support N=1")
}
switch meta.Mode {
case relaymode.ImagesGenerations:
return convertImageCreateRequest(request)
case relaymode.ImagesEdits:
return convertImageRemixRequest(c)
default:
return nil, errors.New("not implemented")
}
}
func convertImageCreateRequest(request *model.ImageRequest) (any, error) {
return DrawImageRequest{
Input: ImageInput{
Steps: 25,
Prompt: request.Prompt,
Guidance: 3,
Seed: int(time.Now().UnixNano()),
SafetyTolerance: 5,
NImages: 1, // replicate will always return 1 image
Width: 1440,
Height: 1440,
AspectRatio: "1:1",
},
}, nil
}
func convertImageRemixRequest(c *gin.Context) (any, error) {
// recover request body
requestBody, err := common.GetRequestBody(c)
if err != nil {
return nil, errors.Wrap(err, "get request body")
}
c.Request.Body = io.NopCloser(bytes.NewBuffer(requestBody))
rawReq := new(OpenaiImageEditRequest)
if err := c.ShouldBind(rawReq); err != nil {
return nil, errors.Wrap(err, "parse image edit form")
}
return rawReq.toFluxRemixRequest()
}
// ConvertRequest converts the request to the format that the target API expects.
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if !request.Stream {
// TODO: support non-stream mode
return nil, errors.Errorf("replicate models only support stream mode now, please set stream=true")
}
// Build the prompt from OpenAI messages
var promptBuilder strings.Builder
for _, message := range request.Messages {
switch msgCnt := message.Content.(type) {
case string:
promptBuilder.WriteString(message.Role)
promptBuilder.WriteString(": ")
promptBuilder.WriteString(msgCnt)
promptBuilder.WriteString("\n")
default:
}
}
replicateRequest := ReplicateChatRequest{
Input: ChatInput{
Prompt: promptBuilder.String(),
MaxTokens: request.MaxTokens,
Temperature: 1.0,
TopP: 1.0,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
},
}
// Map optional fields
if request.Temperature != nil {
replicateRequest.Input.Temperature = *request.Temperature
}
if request.TopP != nil {
replicateRequest.Input.TopP = *request.TopP
}
if request.PresencePenalty != nil {
replicateRequest.Input.PresencePenalty = *request.PresencePenalty
}
if request.FrequencyPenalty != nil {
replicateRequest.Input.FrequencyPenalty = *request.FrequencyPenalty
}
if request.MaxTokens > 0 {
replicateRequest.Input.MaxTokens = request.MaxTokens
} else if request.MaxTokens == 0 {
replicateRequest.Input.MaxTokens = 500
}
return replicateRequest, nil
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.meta = meta
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
if !slices.Contains(ModelList, meta.OriginModelName) {
return "", errors.Errorf("model %s not supported", meta.OriginModelName)
}
return fmt.Sprintf("https://api.replicate.com/v1/models/%s/predictions", meta.OriginModelName), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", "Bearer "+meta.APIKey)
return nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
logger.Info(c, "send request to replicate")
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
switch meta.Mode {
case relaymode.ImagesGenerations,
relaymode.ImagesEdits:
err, usage = ImageHandler(c, resp)
case relaymode.ChatCompletions:
err, usage = ChatHandler(c, resp)
default:
err = openai.ErrorWrapper(errors.New("not implemented"), "not_implemented", http.StatusInternalServerError)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "replicate"
}

View File

@@ -0,0 +1,191 @@
package replicate
import (
"bufio"
"encoding/json"
"io"
"net/http"
"strings"
"time"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
func ChatHandler(c *gin.Context, resp *http.Response) (
srvErr *model.ErrorWithStatusCode, usage *model.Usage) {
if resp.StatusCode != http.StatusCreated {
payload, _ := io.ReadAll(resp.Body)
return openai.ErrorWrapper(
errors.Errorf("bad_status_code [%d]%s", resp.StatusCode, string(payload)),
"bad_status_code", http.StatusInternalServerError),
nil
}
respBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
respData := new(ChatResponse)
if err = json.Unmarshal(respBody, respData); err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
for {
err = func() error {
// get task
taskReq, err := http.NewRequestWithContext(c.Request.Context(),
http.MethodGet, respData.URLs.Get, nil)
if err != nil {
return errors.Wrap(err, "new request")
}
taskReq.Header.Set("Authorization", "Bearer "+meta.GetByContext(c).APIKey)
taskResp, err := http.DefaultClient.Do(taskReq)
if err != nil {
return errors.Wrap(err, "get task")
}
defer taskResp.Body.Close()
if taskResp.StatusCode != http.StatusOK {
payload, _ := io.ReadAll(taskResp.Body)
return errors.Errorf("bad status code [%d]%s",
taskResp.StatusCode, string(payload))
}
taskBody, err := io.ReadAll(taskResp.Body)
if err != nil {
return errors.Wrap(err, "read task response")
}
taskData := new(ChatResponse)
if err = json.Unmarshal(taskBody, taskData); err != nil {
return errors.Wrap(err, "decode task response")
}
switch taskData.Status {
case "succeeded":
case "failed", "canceled":
return errors.Errorf("task failed, [%s]%s", taskData.Status, taskData.Error)
default:
time.Sleep(time.Second * 3)
return errNextLoop
}
if taskData.URLs.Stream == "" {
return errors.New("stream url is empty")
}
// request stream url
responseText, err := chatStreamHandler(c, taskData.URLs.Stream)
if err != nil {
return errors.Wrap(err, "chat stream handler")
}
ctxMeta := meta.GetByContext(c)
usage = openai.ResponseText2Usage(responseText,
ctxMeta.ActualModelName, ctxMeta.PromptTokens)
return nil
}()
if err != nil {
if errors.Is(err, errNextLoop) {
continue
}
return openai.ErrorWrapper(err, "chat_task_failed", http.StatusInternalServerError), nil
}
break
}
return nil, usage
}
const (
eventPrefix = "event: "
dataPrefix = "data: "
done = "[DONE]"
)
func chatStreamHandler(c *gin.Context, streamUrl string) (responseText string, err error) {
// request stream endpoint
streamReq, err := http.NewRequestWithContext(c.Request.Context(), http.MethodGet, streamUrl, nil)
if err != nil {
return "", errors.Wrap(err, "new request to stream")
}
streamReq.Header.Set("Authorization", "Bearer "+meta.GetByContext(c).APIKey)
streamReq.Header.Set("Accept", "text/event-stream")
streamReq.Header.Set("Cache-Control", "no-store")
resp, err := http.DefaultClient.Do(streamReq)
if err != nil {
return "", errors.Wrap(err, "do request to stream")
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
payload, _ := io.ReadAll(resp.Body)
return "", errors.Errorf("bad status code [%d]%s", resp.StatusCode, string(payload))
}
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
doneRendered := false
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
if line == "" {
continue
}
// Handle comments starting with ':'
if strings.HasPrefix(line, ":") {
continue
}
// Parse SSE fields
if strings.HasPrefix(line, eventPrefix) {
event := strings.TrimSpace(line[len(eventPrefix):])
var data string
// Read the following lines to get data and id
for scanner.Scan() {
nextLine := scanner.Text()
if nextLine == "" {
break
}
if strings.HasPrefix(nextLine, dataPrefix) {
data = nextLine[len(dataPrefix):]
} else if strings.HasPrefix(nextLine, "id:") {
// id = strings.TrimSpace(nextLine[len("id:"):])
}
}
if event == "output" {
render.StringData(c, data)
responseText += data
} else if event == "done" {
render.Done(c)
doneRendered = true
break
}
}
}
if err := scanner.Err(); err != nil {
return "", errors.Wrap(err, "scan stream")
}
if !doneRendered {
render.Done(c)
}
return responseText, nil
}

View File

@@ -0,0 +1,58 @@
package replicate
// ModelList is a list of models that can be used with Replicate.
//
// https://replicate.com/pricing
var ModelList = []string{
// -------------------------------------
// image model
// -------------------------------------
"black-forest-labs/flux-1.1-pro",
"black-forest-labs/flux-1.1-pro-ultra",
"black-forest-labs/flux-canny-dev",
"black-forest-labs/flux-canny-pro",
"black-forest-labs/flux-depth-dev",
"black-forest-labs/flux-depth-pro",
"black-forest-labs/flux-dev",
"black-forest-labs/flux-dev-lora",
"black-forest-labs/flux-fill-dev",
"black-forest-labs/flux-fill-pro",
"black-forest-labs/flux-pro",
"black-forest-labs/flux-redux-dev",
"black-forest-labs/flux-redux-schnell",
"black-forest-labs/flux-schnell",
"black-forest-labs/flux-schnell-lora",
"ideogram-ai/ideogram-v2",
"ideogram-ai/ideogram-v2-turbo",
"recraft-ai/recraft-v3",
"recraft-ai/recraft-v3-svg",
"stability-ai/stable-diffusion-3",
"stability-ai/stable-diffusion-3.5-large",
"stability-ai/stable-diffusion-3.5-large-turbo",
"stability-ai/stable-diffusion-3.5-medium",
// -------------------------------------
// language model
// -------------------------------------
"ibm-granite/granite-20b-code-instruct-8k",
"ibm-granite/granite-3.0-2b-instruct",
"ibm-granite/granite-3.0-8b-instruct",
"ibm-granite/granite-8b-code-instruct-128k",
"meta/llama-2-13b",
"meta/llama-2-13b-chat",
"meta/llama-2-70b",
"meta/llama-2-70b-chat",
"meta/llama-2-7b",
"meta/llama-2-7b-chat",
"meta/meta-llama-3.1-405b-instruct",
"meta/meta-llama-3-70b",
"meta/meta-llama-3-70b-instruct",
"meta/meta-llama-3-8b",
"meta/meta-llama-3-8b-instruct",
"mistralai/mistral-7b-instruct-v0.2",
"mistralai/mistral-7b-v0.1",
"mistralai/mixtral-8x7b-instruct-v0.1",
// -------------------------------------
// video model
// -------------------------------------
// "minimax/video-01", // TODO: implement the adaptor
}

View File

@@ -0,0 +1,207 @@
package replicate
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"image"
"image/png"
"io"
"net/http"
"sync"
"time"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"golang.org/x/image/webp"
"golang.org/x/sync/errgroup"
)
var errNextLoop = errors.New("next_loop")
// ImageHandler handles the response from the image creation or remix request
func ImageHandler(c *gin.Context, resp *http.Response) (
*model.ErrorWithStatusCode, *model.Usage) {
if resp.StatusCode != http.StatusCreated {
payload, _ := io.ReadAll(resp.Body)
return openai.ErrorWrapper(
errors.Errorf("bad_status_code [%d]%s", resp.StatusCode, string(payload)),
"bad_status_code", http.StatusInternalServerError),
nil
}
respBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
respData := new(ImageResponse)
if err = json.Unmarshal(respBody, respData); err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
for {
err = func() error {
// get task
taskReq, err := http.NewRequestWithContext(c.Request.Context(),
http.MethodGet, respData.URLs.Get, nil)
if err != nil {
return errors.Wrap(err, "new request")
}
taskReq.Header.Set("Authorization", "Bearer "+meta.GetByContext(c).APIKey)
taskResp, err := http.DefaultClient.Do(taskReq)
if err != nil {
return errors.Wrap(err, "get task")
}
defer taskResp.Body.Close()
if taskResp.StatusCode != http.StatusOK {
payload, _ := io.ReadAll(taskResp.Body)
return errors.Errorf("bad status code [%d]%s",
taskResp.StatusCode, string(payload))
}
taskBody, err := io.ReadAll(taskResp.Body)
if err != nil {
return errors.Wrap(err, "read task response")
}
taskData := new(ImageResponse)
if err = json.Unmarshal(taskBody, taskData); err != nil {
return errors.Wrap(err, "decode task response")
}
switch taskData.Status {
case "succeeded":
case "failed", "canceled":
return errors.Errorf("task failed, [%s]%s", taskData.Status, taskData.Error)
default:
time.Sleep(time.Second * 3)
return errNextLoop
}
output, err := taskData.GetOutput()
if err != nil {
return errors.Wrap(err, "get output")
}
if len(output) == 0 {
return errors.New("response output is empty")
}
var mu sync.Mutex
var pool errgroup.Group
respBody := &openai.ImageResponse{
Created: taskData.CompletedAt.Unix(),
Data: []openai.ImageData{},
}
for _, imgOut := range output {
imgOut := imgOut
pool.Go(func() error {
// download image
downloadReq, err := http.NewRequestWithContext(c.Request.Context(),
http.MethodGet, imgOut, nil)
if err != nil {
return errors.Wrap(err, "new request")
}
imgResp, err := http.DefaultClient.Do(downloadReq)
if err != nil {
return errors.Wrap(err, "download image")
}
defer imgResp.Body.Close()
if imgResp.StatusCode != http.StatusOK {
payload, _ := io.ReadAll(imgResp.Body)
return errors.Errorf("bad status code [%d]%s",
imgResp.StatusCode, string(payload))
}
imgData, err := io.ReadAll(imgResp.Body)
if err != nil {
return errors.Wrap(err, "read image")
}
imgData, err = ConvertImageToPNG(imgData)
if err != nil {
return errors.Wrap(err, "convert image")
}
mu.Lock()
respBody.Data = append(respBody.Data, openai.ImageData{
B64Json: fmt.Sprintf("data:image/png;base64,%s",
base64.StdEncoding.EncodeToString(imgData)),
})
mu.Unlock()
return nil
})
}
if err := pool.Wait(); err != nil {
if len(respBody.Data) == 0 {
return errors.WithStack(err)
}
logger.Error(c, fmt.Sprintf("some images failed to download: %+v", err))
}
c.JSON(http.StatusOK, respBody)
return nil
}()
if err != nil {
if errors.Is(err, errNextLoop) {
continue
}
return openai.ErrorWrapper(err, "image_task_failed", http.StatusInternalServerError), nil
}
break
}
return nil, nil
}
// ConvertImageToPNG converts a WebP image to PNG format
func ConvertImageToPNG(webpData []byte) ([]byte, error) {
// bypass if it's already a PNG image
if bytes.HasPrefix(webpData, []byte("\x89PNG")) {
return webpData, nil
}
// check if is jpeg, convert to png
if bytes.HasPrefix(webpData, []byte("\xff\xd8\xff")) {
img, _, err := image.Decode(bytes.NewReader(webpData))
if err != nil {
return nil, errors.Wrap(err, "decode jpeg")
}
var pngBuffer bytes.Buffer
if err := png.Encode(&pngBuffer, img); err != nil {
return nil, errors.Wrap(err, "encode png")
}
return pngBuffer.Bytes(), nil
}
// Decode the WebP image
img, err := webp.Decode(bytes.NewReader(webpData))
if err != nil {
return nil, errors.Wrap(err, "decode webp")
}
// Encode the image as PNG
var pngBuffer bytes.Buffer
if err := png.Encode(&pngBuffer, img); err != nil {
return nil, errors.Wrap(err, "encode png")
}
return pngBuffer.Bytes(), nil
}

View File

@@ -0,0 +1,277 @@
package replicate
import (
"bytes"
"encoding/base64"
"image"
"image/png"
"io"
"mime/multipart"
"time"
"github.com/pkg/errors"
)
type OpenaiImageEditRequest struct {
Image *multipart.FileHeader `json:"image" form:"image" binding:"required"`
Prompt string `json:"prompt" form:"prompt" binding:"required"`
Mask *multipart.FileHeader `json:"mask" form:"mask" binding:"required"`
Model string `json:"model" form:"model" binding:"required"`
N int `json:"n" form:"n" binding:"min=0,max=10"`
Size string `json:"size" form:"size"`
ResponseFormat string `json:"response_format" form:"response_format"`
}
// toFluxRemixRequest convert OpenAI's image edit request to Flux's remix request.
//
// Note that the mask formats of OpenAI and Flux are different:
// OpenAI's mask sets the parts to be modified as transparent (0, 0, 0, 0),
// while Flux sets the parts to be modified as black (255, 255, 255, 255),
// so we need to convert the format here.
//
// Both OpenAI's Image and Mask are browser-native ImageData,
// which need to be converted to base64 dataURI format.
func (r *OpenaiImageEditRequest) toFluxRemixRequest() (*InpaintingImageByFlusReplicateRequest, error) {
if r.ResponseFormat != "b64_json" {
return nil, errors.New("response_format must be b64_json for replicate models")
}
fluxReq := &InpaintingImageByFlusReplicateRequest{
Input: FluxInpaintingInput{
Prompt: r.Prompt,
Seed: int(time.Now().UnixNano()),
Steps: 30,
Guidance: 3,
SafetyTolerance: 5,
PromptUnsampling: false,
OutputFormat: "png",
},
}
imgFile, err := r.Image.Open()
if err != nil {
return nil, errors.Wrap(err, "open image file")
}
defer imgFile.Close()
imgData, err := io.ReadAll(imgFile)
if err != nil {
return nil, errors.Wrap(err, "read image file")
}
maskFile, err := r.Mask.Open()
if err != nil {
return nil, errors.Wrap(err, "open mask file")
}
defer maskFile.Close()
// Convert image to base64
imageBase64 := "data:image/png;base64," + base64.StdEncoding.EncodeToString(imgData)
fluxReq.Input.Image = imageBase64
// Convert mask data to RGBA
maskPNG, err := png.Decode(maskFile)
if err != nil {
return nil, errors.Wrap(err, "decode mask file")
}
// convert mask to RGBA
var maskRGBA *image.RGBA
switch converted := maskPNG.(type) {
case *image.RGBA:
maskRGBA = converted
default:
// Convert to RGBA
bounds := maskPNG.Bounds()
maskRGBA = image.NewRGBA(bounds)
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
maskRGBA.Set(x, y, maskPNG.At(x, y))
}
}
}
maskData := maskRGBA.Pix
invertedMask := make([]byte, len(maskData))
for i := 0; i+4 <= len(maskData); i += 4 {
// If pixel is transparent (alpha = 0), make it black (255)
if maskData[i+3] == 0 {
invertedMask[i] = 255 // R
invertedMask[i+1] = 255 // G
invertedMask[i+2] = 255 // B
invertedMask[i+3] = 255 // A
} else {
// Copy original pixel
copy(invertedMask[i:i+4], maskData[i:i+4])
}
}
// Convert inverted mask to base64 encoded png image
invertedMaskRGBA := &image.RGBA{
Pix: invertedMask,
Stride: maskRGBA.Stride,
Rect: maskRGBA.Rect,
}
var buf bytes.Buffer
err = png.Encode(&buf, invertedMaskRGBA)
if err != nil {
return nil, errors.Wrap(err, "encode inverted mask to png")
}
invertedMaskBase64 := "data:image/png;base64," + base64.StdEncoding.EncodeToString(buf.Bytes())
fluxReq.Input.Mask = invertedMaskBase64
return fluxReq, nil
}
// DrawImageRequest draw image by fluxpro
//
// https://replicate.com/black-forest-labs/flux-pro?prediction=kg1krwsdf9rg80ch1sgsrgq7h8&output=json
type DrawImageRequest struct {
Input ImageInput `json:"input"`
}
// ImageInput is input of DrawImageByFluxProRequest
//
// https://replicate.com/black-forest-labs/flux-1.1-pro/api/schema
type ImageInput struct {
Steps int `json:"steps" binding:"required,min=1"`
Prompt string `json:"prompt" binding:"required,min=5"`
ImagePrompt string `json:"image_prompt"`
Guidance int `json:"guidance" binding:"required,min=2,max=5"`
Interval int `json:"interval" binding:"required,min=1,max=4"`
AspectRatio string `json:"aspect_ratio" binding:"required,oneof=1:1 16:9 2:3 3:2 4:5 5:4 9:16"`
SafetyTolerance int `json:"safety_tolerance" binding:"required,min=1,max=5"`
Seed int `json:"seed"`
NImages int `json:"n_images" binding:"required,min=1,max=8"`
Width int `json:"width" binding:"required,min=256,max=1440"`
Height int `json:"height" binding:"required,min=256,max=1440"`
}
// InpaintingImageByFlusReplicateRequest is request to inpainting image by flux pro
//
// https://replicate.com/black-forest-labs/flux-fill-pro/api/schema
type InpaintingImageByFlusReplicateRequest struct {
Input FluxInpaintingInput `json:"input"`
}
// FluxInpaintingInput is input of DrawImageByFluxProRequest
//
// https://replicate.com/black-forest-labs/flux-fill-pro/api/schema
type FluxInpaintingInput struct {
Mask string `json:"mask" binding:"required"`
Image string `json:"image" binding:"required"`
Seed int `json:"seed"`
Steps int `json:"steps" binding:"required,min=1"`
Prompt string `json:"prompt" binding:"required,min=5"`
Guidance int `json:"guidance" binding:"required,min=2,max=5"`
OutputFormat string `json:"output_format"`
SafetyTolerance int `json:"safety_tolerance" binding:"required,min=1,max=5"`
PromptUnsampling bool `json:"prompt_unsampling"`
}
// ImageResponse is response of DrawImageByFluxProRequest
//
// https://replicate.com/black-forest-labs/flux-pro?prediction=kg1krwsdf9rg80ch1sgsrgq7h8&output=json
type ImageResponse struct {
CompletedAt time.Time `json:"completed_at"`
CreatedAt time.Time `json:"created_at"`
DataRemoved bool `json:"data_removed"`
Error string `json:"error"`
ID string `json:"id"`
Input DrawImageRequest `json:"input"`
Logs string `json:"logs"`
Metrics FluxMetrics `json:"metrics"`
// Output could be `string` or `[]string`
Output any `json:"output"`
StartedAt time.Time `json:"started_at"`
Status string `json:"status"`
URLs FluxURLs `json:"urls"`
Version string `json:"version"`
}
func (r *ImageResponse) GetOutput() ([]string, error) {
switch v := r.Output.(type) {
case string:
return []string{v}, nil
case []string:
return v, nil
case nil:
return nil, nil
case []interface{}:
// convert []interface{} to []string
ret := make([]string, len(v))
for idx, vv := range v {
if vvv, ok := vv.(string); ok {
ret[idx] = vvv
} else {
return nil, errors.Errorf("unknown output type: [%T]%v", vv, vv)
}
}
return ret, nil
default:
return nil, errors.Errorf("unknown output type: [%T]%v", r.Output, r.Output)
}
}
// FluxMetrics is metrics of ImageResponse
type FluxMetrics struct {
ImageCount int `json:"image_count"`
PredictTime float64 `json:"predict_time"`
TotalTime float64 `json:"total_time"`
}
// FluxURLs is urls of ImageResponse
type FluxURLs struct {
Get string `json:"get"`
Cancel string `json:"cancel"`
}
type ReplicateChatRequest struct {
Input ChatInput `json:"input" form:"input" binding:"required"`
}
// ChatInput is input of ChatByReplicateRequest
//
// https://replicate.com/meta/meta-llama-3.1-405b-instruct/api/schema
type ChatInput struct {
TopK int `json:"top_k"`
TopP float64 `json:"top_p"`
Prompt string `json:"prompt"`
MaxTokens int `json:"max_tokens"`
MinTokens int `json:"min_tokens"`
Temperature float64 `json:"temperature"`
SystemPrompt string `json:"system_prompt"`
StopSequences string `json:"stop_sequences"`
PromptTemplate string `json:"prompt_template"`
PresencePenalty float64 `json:"presence_penalty"`
FrequencyPenalty float64 `json:"frequency_penalty"`
}
// ChatResponse is response of ChatByReplicateRequest
//
// https://replicate.com/meta/meta-llama-3.1-405b-instruct/examples?input=http&output=json
type ChatResponse struct {
CompletedAt time.Time `json:"completed_at"`
CreatedAt time.Time `json:"created_at"`
DataRemoved bool `json:"data_removed"`
Error string `json:"error"`
ID string `json:"id"`
Input ChatInput `json:"input"`
Logs string `json:"logs"`
Metrics FluxMetrics `json:"metrics"`
// Output could be `string` or `[]string`
Output []string `json:"output"`
StartedAt time.Time `json:"started_at"`
Status string `json:"status"`
URLs ChatResponseUrl `json:"urls"`
Version string `json:"version"`
}
// ChatResponseUrl is task urls of ChatResponse
type ChatResponseUrl struct {
Stream string `json:"stream"`
Get string `json:"get"`
Cancel string `json:"cancel"`
}

View File

@@ -0,0 +1,106 @@
package replicate
import (
"bytes"
"image"
"image/draw"
"image/png"
"io"
"mime/multipart"
"net/http"
"testing"
"github.com/stretchr/testify/require"
)
type nopCloser struct {
io.Reader
}
func (n nopCloser) Close() error { return nil }
// Custom FileHeader to override Open method
type customFileHeader struct {
*multipart.FileHeader
openFunc func() (multipart.File, error)
}
func (c *customFileHeader) Open() (multipart.File, error) {
return c.openFunc()
}
func TestOpenaiImageEditRequest_toFluxRemixRequest(t *testing.T) {
// Create a simple image for testing
img := image.NewRGBA(image.Rect(0, 0, 10, 10))
draw.Draw(img, img.Bounds(), &image.Uniform{C: image.Black}, image.Point{}, draw.Src)
var imgBuf bytes.Buffer
err := png.Encode(&imgBuf, img)
require.NoError(t, err)
// Create a simple mask for testing
mask := image.NewRGBA(image.Rect(0, 0, 10, 10))
draw.Draw(mask, mask.Bounds(), &image.Uniform{C: image.Black}, image.Point{}, draw.Src)
var maskBuf bytes.Buffer
err = png.Encode(&maskBuf, mask)
require.NoError(t, err)
// Create a multipart.FileHeader from the image and mask bytes
imgFileHeader, err := createFileHeader("image", "test.png", imgBuf.Bytes())
require.NoError(t, err)
maskFileHeader, err := createFileHeader("mask", "test.png", maskBuf.Bytes())
require.NoError(t, err)
req := &OpenaiImageEditRequest{
Image: imgFileHeader,
Mask: maskFileHeader,
Prompt: "Test prompt",
Model: "test-model",
ResponseFormat: "b64_json",
}
fluxReq, err := req.toFluxRemixRequest()
require.NoError(t, err)
require.NotNil(t, fluxReq)
require.Equal(t, req.Prompt, fluxReq.Input.Prompt)
require.NotEmpty(t, fluxReq.Input.Image)
require.NotEmpty(t, fluxReq.Input.Mask)
}
// createFileHeader creates a multipart.FileHeader from file bytes
func createFileHeader(fieldname, filename string, fileBytes []byte) (*multipart.FileHeader, error) {
body := &bytes.Buffer{}
writer := multipart.NewWriter(body)
// Create a form file field
part, err := writer.CreateFormFile(fieldname, filename)
if err != nil {
return nil, err
}
// Write the file bytes to the form file field
_, err = part.Write(fileBytes)
if err != nil {
return nil, err
}
// Close the writer to finalize the form
err = writer.Close()
if err != nil {
return nil, err
}
// Parse the multipart form
req := &http.Request{
Header: http.Header{},
Body: io.NopCloser(body),
}
req.Header.Set("Content-Type", writer.FormDataContentType())
err = req.ParseMultipartForm(int64(body.Len()))
if err != nil {
return nil, err
}
// Retrieve the file header from the parsed form
fileHeader := req.MultipartForm.File[fieldname][0]
return fileHeader, nil
}

View File

@@ -0,0 +1,36 @@
package siliconflow
// https://docs.siliconflow.cn/docs/getting-started
var ModelList = []string{
"deepseek-ai/deepseek-llm-67b-chat",
"Qwen/Qwen1.5-14B-Chat",
"Qwen/Qwen1.5-7B-Chat",
"Qwen/Qwen1.5-110B-Chat",
"Qwen/Qwen1.5-32B-Chat",
"01-ai/Yi-1.5-6B-Chat",
"01-ai/Yi-1.5-9B-Chat-16K",
"01-ai/Yi-1.5-34B-Chat-16K",
"THUDM/chatglm3-6b",
"deepseek-ai/DeepSeek-V2-Chat",
"THUDM/glm-4-9b-chat",
"Qwen/Qwen2-72B-Instruct",
"Qwen/Qwen2-7B-Instruct",
"Qwen/Qwen2-57B-A14B-Instruct",
"deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Qwen/Qwen2-1.5B-Instruct",
"internlm/internlm2_5-7b-chat",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-large-zh-v1.5",
"Pro/Qwen/Qwen2-7B-Instruct",
"Pro/Qwen/Qwen2-1.5B-Instruct",
"Pro/Qwen/Qwen1.5-7B-Chat",
"Pro/THUDM/glm-4-9b-chat",
"Pro/THUDM/chatglm3-6b",
"Pro/01-ai/Yi-1.5-9B-Chat-16K",
"Pro/01-ai/Yi-1.5-6B-Chat",
"Pro/google/gemma-2-9b-it",
"Pro/internlm/internlm2_5-7b-chat",
"Pro/meta-llama/Meta-Llama-3-8B-Instruct",
"Pro/mistralai/Mistral-7B-Instruct-v0.2",
}

View File

@@ -0,0 +1,13 @@
package stepfun
var ModelList = []string{
"step-1-8k",
"step-1-32k",
"step-1-128k",
"step-1-256k",
"step-1-flash",
"step-2-16k",
"step-1v-8k",
"step-1v-32k",
"step-1x-medium",
}

View File

@@ -0,0 +1,90 @@
package tencent
import (
"errors"
"io"
"net/http"
"strconv"
"strings"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/relay/adaptor"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
// https://cloud.tencent.com/document/api/1729/101837
type Adaptor struct {
Sign string
Action string
Version string
Timestamp int64
}
func (a *Adaptor) Init(meta *meta.Meta) {
a.Action = "ChatCompletions"
a.Version = "2023-09-01"
a.Timestamp = helper.GetTimestamp()
}
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
return meta.BaseURL + "/", nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *meta.Meta) error {
adaptor.SetupCommonRequestHeader(c, req, meta)
req.Header.Set("Authorization", a.Sign)
req.Header.Set("X-TC-Action", a.Action)
req.Header.Set("X-TC-Version", a.Version)
req.Header.Set("X-TC-Timestamp", strconv.FormatInt(a.Timestamp, 10))
return nil
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
apiKey := c.Request.Header.Get("Authorization")
apiKey = strings.TrimPrefix(apiKey, "Bearer ")
_, secretId, secretKey, err := ParseConfig(apiKey)
if err != nil {
return nil, err
}
tencentRequest := ConvertRequest(*request)
// we have to calculate the sign here
a.Sign = GetSign(*tencentRequest, a, secretId, secretKey)
return tencentRequest, nil
}
func (a *Adaptor) ConvertImageRequest(_ *gin.Context, request *model.ImageRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
return request, nil
}
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return adaptor.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
var responseText string
err, responseText = StreamHandler(c, resp)
usage = openai.ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
} else {
err, usage = Handler(c, resp)
}
return
}
func (a *Adaptor) GetModelList() []string {
return ModelList
}
func (a *Adaptor) GetChannelName() string {
return "tencent"
}

View File

@@ -0,0 +1,9 @@
package tencent
var ModelList = []string{
"hunyuan-lite",
"hunyuan-standard",
"hunyuan-standard-256K",
"hunyuan-pro",
"hunyuan-vision",
}

View File

@@ -0,0 +1,245 @@
package tencent
import (
"bufio"
"crypto/hmac"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"strconv"
"strings"
"time"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/conv"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/common/random"
"github.com/songquanpeng/one-api/common/render"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/model"
)
func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
messages := make([]*Message, 0, len(request.Messages))
for i := 0; i < len(request.Messages); i++ {
message := request.Messages[i]
messages = append(messages, &Message{
Content: message.StringContent(),
Role: message.Role,
})
}
return &ChatRequest{
Model: &request.Model,
Stream: &request.Stream,
Messages: messages,
TopP: request.TopP,
Temperature: request.Temperature,
}
}
func responseTencent2OpenAI(response *ChatResponse) *openai.TextResponse {
fullTextResponse := openai.TextResponse{
Object: "chat.completion",
Created: helper.GetTimestamp(),
Usage: model.Usage{
PromptTokens: response.Usage.PromptTokens,
CompletionTokens: response.Usage.CompletionTokens,
TotalTokens: response.Usage.TotalTokens,
},
}
if len(response.Choices) > 0 {
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: response.Choices[0].Messages.Content,
},
FinishReason: response.Choices[0].FinishReason,
}
fullTextResponse.Choices = append(fullTextResponse.Choices, choice)
}
return &fullTextResponse
}
func streamResponseTencent2OpenAI(TencentResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
response := openai.ChatCompletionsStreamResponse{
Id: fmt.Sprintf("chatcmpl-%s", random.GetUUID()),
Object: "chat.completion.chunk",
Created: helper.GetTimestamp(),
Model: "tencent-hunyuan",
}
if len(TencentResponse.Choices) > 0 {
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = TencentResponse.Choices[0].Delta.Content
if TencentResponse.Choices[0].FinishReason == "stop" {
choice.FinishReason = &constant.StopFinishReason
}
response.Choices = append(response.Choices, choice)
}
return &response
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, string) {
var responseText string
scanner := bufio.NewScanner(resp.Body)
scanner.Split(bufio.ScanLines)
common.SetEventStreamHeaders(c)
for scanner.Scan() {
data := scanner.Text()
if len(data) < 5 || !strings.HasPrefix(data, "data:") {
continue
}
data = strings.TrimPrefix(data, "data:")
var tencentResponse ChatResponse
err := json.Unmarshal([]byte(data), &tencentResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
continue
}
response := streamResponseTencent2OpenAI(&tencentResponse)
if len(response.Choices) != 0 {
responseText += conv.AsString(response.Choices[0].Delta.Content)
}
err = render.ObjectData(c, response)
if err != nil {
logger.SysError(err.Error())
}
}
if err := scanner.Err(); err != nil {
logger.SysError("error reading stream: " + err.Error())
}
render.Done(c)
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
}
return nil, responseText
}
func Handler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var TencentResponse ChatResponse
var responseP ChatResponseP
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &responseP)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
TencentResponse = responseP.Response
if TencentResponse.Error.Code != 0 {
return &model.ErrorWithStatusCode{
Error: model.Error{
Message: TencentResponse.Error.Message,
Code: TencentResponse.Error.Code,
},
StatusCode: resp.StatusCode,
}, nil
}
fullTextResponse := responseTencent2OpenAI(&TencentResponse)
fullTextResponse.Model = "hunyuan"
jsonResponse, err := json.Marshal(fullTextResponse)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(resp.StatusCode)
_, err = c.Writer.Write(jsonResponse)
if err != nil {
return openai.ErrorWrapper(err, "write_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &fullTextResponse.Usage
}
func ParseConfig(config string) (appId int64, secretId string, secretKey string, err error) {
parts := strings.Split(config, "|")
if len(parts) != 3 {
err = errors.New("invalid tencent config")
return
}
appId, err = strconv.ParseInt(parts[0], 10, 64)
secretId = parts[1]
secretKey = parts[2]
return
}
func sha256hex(s string) string {
b := sha256.Sum256([]byte(s))
return hex.EncodeToString(b[:])
}
func hmacSha256(s, key string) string {
hashed := hmac.New(sha256.New, []byte(key))
hashed.Write([]byte(s))
return string(hashed.Sum(nil))
}
func GetSign(req ChatRequest, adaptor *Adaptor, secId, secKey string) string {
// build canonical request string
host := "hunyuan.tencentcloudapi.com"
httpRequestMethod := "POST"
canonicalURI := "/"
canonicalQueryString := ""
canonicalHeaders := fmt.Sprintf("content-type:%s\nhost:%s\nx-tc-action:%s\n",
"application/json", host, strings.ToLower(adaptor.Action))
signedHeaders := "content-type;host;x-tc-action"
payload, _ := json.Marshal(req)
hashedRequestPayload := sha256hex(string(payload))
canonicalRequest := fmt.Sprintf("%s\n%s\n%s\n%s\n%s\n%s",
httpRequestMethod,
canonicalURI,
canonicalQueryString,
canonicalHeaders,
signedHeaders,
hashedRequestPayload)
// build string to sign
algorithm := "TC3-HMAC-SHA256"
requestTimestamp := strconv.FormatInt(adaptor.Timestamp, 10)
timestamp, _ := strconv.ParseInt(requestTimestamp, 10, 64)
t := time.Unix(timestamp, 0).UTC()
// must be the format 2006-01-02, ref to package time for more info
date := t.Format("2006-01-02")
credentialScope := fmt.Sprintf("%s/%s/tc3_request", date, "hunyuan")
hashedCanonicalRequest := sha256hex(canonicalRequest)
string2sign := fmt.Sprintf("%s\n%s\n%s\n%s",
algorithm,
requestTimestamp,
credentialScope,
hashedCanonicalRequest)
// sign string
secretDate := hmacSha256(date, "TC3"+secKey)
secretService := hmacSha256("hunyuan", secretDate)
secretKey := hmacSha256("tc3_request", secretService)
signature := hex.EncodeToString([]byte(hmacSha256(string2sign, secretKey)))
// build authorization
authorization := fmt.Sprintf("%s Credential=%s/%s, SignedHeaders=%s, Signature=%s",
algorithm,
secId,
credentialScope,
signedHeaders,
signature)
return authorization
}

View File

@@ -0,0 +1,75 @@
package tencent
type Message struct {
Role string `json:"Role"`
Content string `json:"Content"`
}
type ChatRequest struct {
// 模型名称,可选值包括 hunyuan-lite、hunyuan-standard、hunyuan-standard-256K、hunyuan-pro。
// 各模型介绍请阅读 [产品概述](https://cloud.tencent.com/document/product/1729/104753) 中的说明。
//
// 注意:
// 不同的模型计费不同,请根据 [购买指南](https://cloud.tencent.com/document/product/1729/97731) 按需调用。
Model *string `json:"Model"`
// 聊天上下文信息。
// 说明:
// 1. 长度最多为 40按对话时间从旧到新在数组中排列。
// 2. Message.Role 可选值system、user、assistant。
// 其中system 角色可选如存在则必须位于列表的最开始。user 和 assistant 需交替出现(一问一答),以 user 提问开始和结束,且 Content 不能为空。Role 的顺序示例:[system可选 user assistant user assistant user ...]。
// 3. Messages 中 Content 总长度不能超过模型输入长度上限(可参考 [产品概述](https://cloud.tencent.com/document/product/1729/104753) 文档),超过则会截断最前面的内容,只保留尾部内容。
Messages []*Message `json:"Messages"`
// 流式调用开关。
// 说明:
// 1. 未传值时默认为非流式调用false
// 2. 流式调用时以 SSE 协议增量返回结果(返回值取 Choices[n].Delta 中的值,需要拼接增量数据才能获得完整结果)。
// 3. 非流式调用时:
// 调用方式与普通 HTTP 请求无异。
// 接口响应耗时较长,**如需更低时延建议设置为 true**。
// 只返回一次最终结果(返回值取 Choices[n].Message 中的值)。
//
// 注意:
// 通过 SDK 调用时,流式和非流式调用需用**不同的方式**获取返回值,具体参考 SDK 中的注释或示例(在各语言 SDK 代码仓库的 examples/hunyuan/v20230901/ 目录中)。
Stream *bool `json:"Stream"`
// 说明:
// 1. 影响输出文本的多样性,取值越大,生成文本的多样性越强。
// 2. 取值区间为 [0.0, 1.0],未传值时使用各模型推荐值。
// 3. 非必要不建议使用,不合理的取值会影响效果。
TopP *float64 `json:"TopP"`
// 说明:
// 1. 较高的数值会使输出更加随机,而较低的数值会使其更加集中和确定。
// 2. 取值区间为 [0.0, 2.0],未传值时使用各模型推荐值。
// 3. 非必要不建议使用,不合理的取值会影响效果。
Temperature *float64 `json:"Temperature"`
}
type Error struct {
Code int `json:"Code"`
Message string `json:"Message"`
}
type Usage struct {
PromptTokens int `json:"PromptTokens"`
CompletionTokens int `json:"CompletionTokens"`
TotalTokens int `json:"TotalTokens"`
}
type ResponseChoices struct {
FinishReason string `json:"FinishReason,omitempty"` // 流式结束标志位,为 stop 则表示尾包
Messages Message `json:"Message,omitempty"` // 内容,同步模式返回内容,流模式为 null 输出 content 内容总数最多支持 1024token。
Delta Message `json:"Delta,omitempty"` // 内容,流模式返回内容,同步模式为 null 输出 content 内容总数最多支持 1024token。
}
type ChatResponse struct {
Choices []ResponseChoices `json:"Choices,omitempty"` // 结果
Created int64 `json:"Created,omitempty"` // unix 时间戳的字符串
Id string `json:"Id,omitempty"` // 会话 id
Usage Usage `json:"Usage,omitempty"` // token 数量
Error Error `json:"Error,omitempty"` // 错误信息 注意:此字段可能返回 null表示取不到有效值
Note string `json:"Note,omitempty"` // 注释
ReqID string `json:"Req_id,omitempty"` // 唯一请求 Id每次请求都会返回。用于反馈接口入参
}
type ChatResponseP struct {
Response ChatResponse `json:"Response,omitempty"`
}

View File

@@ -0,0 +1,10 @@
package togetherai
// https://docs.together.ai/docs/inference-models
var ModelList = []string{
"meta-llama/Llama-3-70b-chat-hf",
"deepseek-ai/deepseek-coder-33b-instruct",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"Qwen/Qwen1.5-72B-Chat",
}

Some files were not shown because too many files have changed in this diff Show More