mirror of
https://github.com/songquanpeng/one-api.git
synced 2025-11-11 10:53:42 +08:00
refactor: refactor relay part
This commit is contained in:
265
relay/controller/audio.go
Normal file
265
relay/controller/audio.go
Normal file
@@ -0,0 +1,265 @@
|
||||
package controller
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"github.com/gin-gonic/gin"
|
||||
"io"
|
||||
"net/http"
|
||||
"one-api/common"
|
||||
"one-api/model"
|
||||
"one-api/relay/channel/openai"
|
||||
"one-api/relay/constant"
|
||||
"one-api/relay/util"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func RelayAudioHelper(c *gin.Context, relayMode int) *openai.ErrorWithStatusCode {
|
||||
audioModel := "whisper-1"
|
||||
|
||||
tokenId := c.GetInt("token_id")
|
||||
channelType := c.GetInt("channel")
|
||||
channelId := c.GetInt("channel_id")
|
||||
userId := c.GetInt("id")
|
||||
group := c.GetString("group")
|
||||
tokenName := c.GetString("token_name")
|
||||
|
||||
var ttsRequest openai.TextToSpeechRequest
|
||||
if relayMode == constant.RelayModeAudioSpeech {
|
||||
// Read JSON
|
||||
err := common.UnmarshalBodyReusable(c, &ttsRequest)
|
||||
// Check if JSON is valid
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "invalid_json", http.StatusBadRequest)
|
||||
}
|
||||
audioModel = ttsRequest.Model
|
||||
// Check if text is too long 4096
|
||||
if len(ttsRequest.Input) > 4096 {
|
||||
return openai.ErrorWrapper(errors.New("input is too long (over 4096 characters)"), "text_too_long", http.StatusBadRequest)
|
||||
}
|
||||
}
|
||||
|
||||
modelRatio := common.GetModelRatio(audioModel)
|
||||
groupRatio := common.GetGroupRatio(group)
|
||||
ratio := modelRatio * groupRatio
|
||||
var quota int
|
||||
var preConsumedQuota int
|
||||
switch relayMode {
|
||||
case constant.RelayModeAudioSpeech:
|
||||
preConsumedQuota = int(float64(len(ttsRequest.Input)) * ratio)
|
||||
quota = preConsumedQuota
|
||||
default:
|
||||
preConsumedQuota = int(float64(common.PreConsumedQuota) * ratio)
|
||||
}
|
||||
userQuota, err := model.CacheGetUserQuota(userId)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "get_user_quota_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
// Check if user quota is enough
|
||||
if userQuota-preConsumedQuota < 0 {
|
||||
return openai.ErrorWrapper(errors.New("user quota is not enough"), "insufficient_user_quota", http.StatusForbidden)
|
||||
}
|
||||
err = model.CacheDecreaseUserQuota(userId, preConsumedQuota)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "decrease_user_quota_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if userQuota > 100*preConsumedQuota {
|
||||
// in this case, we do not pre-consume quota
|
||||
// because the user has enough quota
|
||||
preConsumedQuota = 0
|
||||
}
|
||||
if preConsumedQuota > 0 {
|
||||
err := model.PreConsumeTokenQuota(tokenId, preConsumedQuota)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "pre_consume_token_quota_failed", http.StatusForbidden)
|
||||
}
|
||||
}
|
||||
|
||||
// map model name
|
||||
modelMapping := c.GetString("model_mapping")
|
||||
if modelMapping != "" {
|
||||
modelMap := make(map[string]string)
|
||||
err := json.Unmarshal([]byte(modelMapping), &modelMap)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if modelMap[audioModel] != "" {
|
||||
audioModel = modelMap[audioModel]
|
||||
}
|
||||
}
|
||||
|
||||
baseURL := common.ChannelBaseURLs[channelType]
|
||||
requestURL := c.Request.URL.String()
|
||||
if c.GetString("base_url") != "" {
|
||||
baseURL = c.GetString("base_url")
|
||||
}
|
||||
|
||||
fullRequestURL := util.GetFullRequestURL(baseURL, requestURL, channelType)
|
||||
if relayMode == constant.RelayModeAudioTranscription && channelType == common.ChannelTypeAzure {
|
||||
// https://learn.microsoft.com/en-us/azure/ai-services/openai/whisper-quickstart?tabs=command-line#rest-api
|
||||
apiVersion := util.GetAPIVersion(c)
|
||||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/audio/transcriptions?api-version=%s", baseURL, audioModel, apiVersion)
|
||||
}
|
||||
|
||||
requestBody := &bytes.Buffer{}
|
||||
_, err = io.Copy(requestBody, c.Request.Body)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "new_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
c.Request.Body = io.NopCloser(bytes.NewBuffer(requestBody.Bytes()))
|
||||
responseFormat := c.DefaultPostForm("response_format", "json")
|
||||
|
||||
req, err := http.NewRequest(c.Request.Method, fullRequestURL, requestBody)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
if relayMode == constant.RelayModeAudioTranscription && channelType == common.ChannelTypeAzure {
|
||||
// https://learn.microsoft.com/en-us/azure/ai-services/openai/whisper-quickstart?tabs=command-line#rest-api
|
||||
apiKey := c.Request.Header.Get("Authorization")
|
||||
apiKey = strings.TrimPrefix(apiKey, "Bearer ")
|
||||
req.Header.Set("api-key", apiKey)
|
||||
req.ContentLength = c.Request.ContentLength
|
||||
} else {
|
||||
req.Header.Set("Authorization", c.Request.Header.Get("Authorization"))
|
||||
}
|
||||
req.Header.Set("Content-Type", c.Request.Header.Get("Content-Type"))
|
||||
req.Header.Set("Accept", c.Request.Header.Get("Accept"))
|
||||
|
||||
resp, err := util.HTTPClient.Do(req)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "do_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
err = req.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = c.Request.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
if relayMode != constant.RelayModeAudioSpeech {
|
||||
responseBody, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = resp.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
var openAIErr openai.SlimTextResponse
|
||||
if err = json.Unmarshal(responseBody, &openAIErr); err == nil {
|
||||
if openAIErr.Error.Message != "" {
|
||||
return openai.ErrorWrapper(fmt.Errorf("type %s, code %v, message %s", openAIErr.Error.Type, openAIErr.Error.Code, openAIErr.Error.Message), "request_error", http.StatusInternalServerError)
|
||||
}
|
||||
}
|
||||
|
||||
var text string
|
||||
switch responseFormat {
|
||||
case "json":
|
||||
text, err = getTextFromJSON(responseBody)
|
||||
case "text":
|
||||
text, err = getTextFromText(responseBody)
|
||||
case "srt":
|
||||
text, err = getTextFromSRT(responseBody)
|
||||
case "verbose_json":
|
||||
text, err = getTextFromVerboseJSON(responseBody)
|
||||
case "vtt":
|
||||
text, err = getTextFromVTT(responseBody)
|
||||
default:
|
||||
return openai.ErrorWrapper(errors.New("unexpected_response_format"), "unexpected_response_format", http.StatusInternalServerError)
|
||||
}
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "get_text_from_body_err", http.StatusInternalServerError)
|
||||
}
|
||||
quota = openai.CountTokenText(text, audioModel)
|
||||
resp.Body = io.NopCloser(bytes.NewBuffer(responseBody))
|
||||
}
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
if preConsumedQuota > 0 {
|
||||
// we need to roll back the pre-consumed quota
|
||||
defer func(ctx context.Context) {
|
||||
go func() {
|
||||
// negative means add quota back for token & user
|
||||
err := model.PostConsumeTokenQuota(tokenId, -preConsumedQuota)
|
||||
if err != nil {
|
||||
common.LogError(ctx, fmt.Sprintf("error rollback pre-consumed quota: %s", err.Error()))
|
||||
}
|
||||
}()
|
||||
}(c.Request.Context())
|
||||
}
|
||||
return util.RelayErrorHandler(resp)
|
||||
}
|
||||
quotaDelta := quota - preConsumedQuota
|
||||
defer func(ctx context.Context) {
|
||||
go util.PostConsumeQuota(ctx, tokenId, quotaDelta, quota, userId, channelId, modelRatio, groupRatio, audioModel, tokenName)
|
||||
}(c.Request.Context())
|
||||
|
||||
for k, v := range resp.Header {
|
||||
c.Writer.Header().Set(k, v[0])
|
||||
}
|
||||
c.Writer.WriteHeader(resp.StatusCode)
|
||||
|
||||
_, err = io.Copy(c.Writer, resp.Body)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = resp.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func getTextFromVTT(body []byte) (string, error) {
|
||||
return getTextFromSRT(body)
|
||||
}
|
||||
|
||||
func getTextFromVerboseJSON(body []byte) (string, error) {
|
||||
var whisperResponse openai.WhisperVerboseJSONResponse
|
||||
if err := json.Unmarshal(body, &whisperResponse); err != nil {
|
||||
return "", fmt.Errorf("unmarshal_response_body_failed err :%w", err)
|
||||
}
|
||||
return whisperResponse.Text, nil
|
||||
}
|
||||
|
||||
func getTextFromSRT(body []byte) (string, error) {
|
||||
scanner := bufio.NewScanner(strings.NewReader(string(body)))
|
||||
var builder strings.Builder
|
||||
var textLine bool
|
||||
for scanner.Scan() {
|
||||
line := scanner.Text()
|
||||
if textLine {
|
||||
builder.WriteString(line)
|
||||
textLine = false
|
||||
continue
|
||||
} else if strings.Contains(line, "-->") {
|
||||
textLine = true
|
||||
continue
|
||||
}
|
||||
}
|
||||
if err := scanner.Err(); err != nil {
|
||||
return "", err
|
||||
}
|
||||
return builder.String(), nil
|
||||
}
|
||||
|
||||
func getTextFromText(body []byte) (string, error) {
|
||||
return strings.TrimSuffix(string(body), "\n"), nil
|
||||
}
|
||||
|
||||
func getTextFromJSON(body []byte) (string, error) {
|
||||
var whisperResponse openai.WhisperJSONResponse
|
||||
if err := json.Unmarshal(body, &whisperResponse); err != nil {
|
||||
return "", fmt.Errorf("unmarshal_response_body_failed err :%w", err)
|
||||
}
|
||||
return whisperResponse.Text, nil
|
||||
}
|
||||
224
relay/controller/image.go
Normal file
224
relay/controller/image.go
Normal file
@@ -0,0 +1,224 @@
|
||||
package controller
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"one-api/common"
|
||||
"one-api/model"
|
||||
"one-api/relay/channel/openai"
|
||||
"one-api/relay/util"
|
||||
"strings"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
)
|
||||
|
||||
func isWithinRange(element string, value int) bool {
|
||||
if _, ok := common.DalleGenerationImageAmounts[element]; !ok {
|
||||
return false
|
||||
}
|
||||
min := common.DalleGenerationImageAmounts[element][0]
|
||||
max := common.DalleGenerationImageAmounts[element][1]
|
||||
|
||||
return value >= min && value <= max
|
||||
}
|
||||
|
||||
func RelayImageHelper(c *gin.Context, relayMode int) *openai.ErrorWithStatusCode {
|
||||
imageModel := "dall-e-2"
|
||||
imageSize := "1024x1024"
|
||||
|
||||
tokenId := c.GetInt("token_id")
|
||||
channelType := c.GetInt("channel")
|
||||
channelId := c.GetInt("channel_id")
|
||||
userId := c.GetInt("id")
|
||||
group := c.GetString("group")
|
||||
|
||||
var imageRequest openai.ImageRequest
|
||||
err := common.UnmarshalBodyReusable(c, &imageRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
if imageRequest.N == 0 {
|
||||
imageRequest.N = 1
|
||||
}
|
||||
|
||||
// Size validation
|
||||
if imageRequest.Size != "" {
|
||||
imageSize = imageRequest.Size
|
||||
}
|
||||
|
||||
// Model validation
|
||||
if imageRequest.Model != "" {
|
||||
imageModel = imageRequest.Model
|
||||
}
|
||||
|
||||
imageCostRatio, hasValidSize := common.DalleSizeRatios[imageModel][imageSize]
|
||||
|
||||
// Check if model is supported
|
||||
if hasValidSize {
|
||||
if imageRequest.Quality == "hd" && imageModel == "dall-e-3" {
|
||||
if imageSize == "1024x1024" {
|
||||
imageCostRatio *= 2
|
||||
} else {
|
||||
imageCostRatio *= 1.5
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Prompt validation
|
||||
if imageRequest.Prompt == "" {
|
||||
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Check prompt length
|
||||
if len(imageRequest.Prompt) > common.DalleImagePromptLengthLimitations[imageModel] {
|
||||
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
|
||||
}
|
||||
|
||||
// Number of generated images validation
|
||||
if isWithinRange(imageModel, imageRequest.N) == false {
|
||||
// channel not azure
|
||||
if channelType != common.ChannelTypeAzure {
|
||||
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
|
||||
}
|
||||
}
|
||||
|
||||
// map model name
|
||||
modelMapping := c.GetString("model_mapping")
|
||||
isModelMapped := false
|
||||
if modelMapping != "" {
|
||||
modelMap := make(map[string]string)
|
||||
err := json.Unmarshal([]byte(modelMapping), &modelMap)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if modelMap[imageModel] != "" {
|
||||
imageModel = modelMap[imageModel]
|
||||
isModelMapped = true
|
||||
}
|
||||
}
|
||||
baseURL := common.ChannelBaseURLs[channelType]
|
||||
requestURL := c.Request.URL.String()
|
||||
if c.GetString("base_url") != "" {
|
||||
baseURL = c.GetString("base_url")
|
||||
}
|
||||
fullRequestURL := util.GetFullRequestURL(baseURL, requestURL, channelType)
|
||||
if channelType == common.ChannelTypeAzure {
|
||||
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
|
||||
apiVersion := util.GetAPIVersion(c)
|
||||
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2023-06-01-preview
|
||||
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", baseURL, imageModel, apiVersion)
|
||||
}
|
||||
|
||||
var requestBody io.Reader
|
||||
if isModelMapped || channelType == common.ChannelTypeAzure { // make Azure channel request body
|
||||
jsonStr, err := json.Marshal(imageRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
} else {
|
||||
requestBody = c.Request.Body
|
||||
}
|
||||
|
||||
modelRatio := common.GetModelRatio(imageModel)
|
||||
groupRatio := common.GetGroupRatio(group)
|
||||
ratio := modelRatio * groupRatio
|
||||
userQuota, err := model.CacheGetUserQuota(userId)
|
||||
|
||||
quota := int(ratio*imageCostRatio*1000) * imageRequest.N
|
||||
|
||||
if userQuota-quota < 0 {
|
||||
return openai.ErrorWrapper(errors.New("user quota is not enough"), "insufficient_user_quota", http.StatusForbidden)
|
||||
}
|
||||
|
||||
req, err := http.NewRequest(c.Request.Method, fullRequestURL, requestBody)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
token := c.Request.Header.Get("Authorization")
|
||||
if channelType == common.ChannelTypeAzure { // Azure authentication
|
||||
token = strings.TrimPrefix(token, "Bearer ")
|
||||
req.Header.Set("api-key", token)
|
||||
} else {
|
||||
req.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
req.Header.Set("Content-Type", c.Request.Header.Get("Content-Type"))
|
||||
req.Header.Set("Accept", c.Request.Header.Get("Accept"))
|
||||
|
||||
resp, err := util.HTTPClient.Do(req)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "do_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
err = req.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = c.Request.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
var textResponse openai.ImageResponse
|
||||
|
||||
defer func(ctx context.Context) {
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
return
|
||||
}
|
||||
err := model.PostConsumeTokenQuota(tokenId, quota)
|
||||
if err != nil {
|
||||
common.SysError("error consuming token remain quota: " + err.Error())
|
||||
}
|
||||
err = model.CacheUpdateUserQuota(userId)
|
||||
if err != nil {
|
||||
common.SysError("error update user quota cache: " + err.Error())
|
||||
}
|
||||
if quota != 0 {
|
||||
tokenName := c.GetString("token_name")
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f", modelRatio, groupRatio)
|
||||
model.RecordConsumeLog(ctx, userId, channelId, 0, 0, imageModel, tokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
|
||||
channelId := c.GetInt("channel_id")
|
||||
model.UpdateChannelUsedQuota(channelId, quota)
|
||||
}
|
||||
}(c.Request.Context())
|
||||
|
||||
responseBody, err := io.ReadAll(resp.Body)
|
||||
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = resp.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = json.Unmarshal(responseBody, &textResponse)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
|
||||
resp.Body = io.NopCloser(bytes.NewBuffer(responseBody))
|
||||
|
||||
for k, v := range resp.Header {
|
||||
c.Writer.Header().Set(k, v[0])
|
||||
}
|
||||
c.Writer.WriteHeader(resp.StatusCode)
|
||||
|
||||
_, err = io.Copy(c.Writer, resp.Body)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "copy_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = resp.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
681
relay/controller/text.go
Normal file
681
relay/controller/text.go
Normal file
@@ -0,0 +1,681 @@
|
||||
package controller
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"github.com/gin-gonic/gin"
|
||||
"io"
|
||||
"math"
|
||||
"net/http"
|
||||
"one-api/common"
|
||||
"one-api/model"
|
||||
"one-api/relay/channel/aiproxy"
|
||||
"one-api/relay/channel/ali"
|
||||
"one-api/relay/channel/anthropic"
|
||||
"one-api/relay/channel/baidu"
|
||||
"one-api/relay/channel/google"
|
||||
"one-api/relay/channel/openai"
|
||||
"one-api/relay/channel/tencent"
|
||||
"one-api/relay/channel/xunfei"
|
||||
"one-api/relay/channel/zhipu"
|
||||
"one-api/relay/constant"
|
||||
"one-api/relay/util"
|
||||
"strings"
|
||||
)
|
||||
|
||||
const (
|
||||
APITypeOpenAI = iota
|
||||
APITypeClaude
|
||||
APITypePaLM
|
||||
APITypeBaidu
|
||||
APITypeZhipu
|
||||
APITypeAli
|
||||
APITypeXunfei
|
||||
APITypeAIProxyLibrary
|
||||
APITypeTencent
|
||||
APITypeGemini
|
||||
)
|
||||
|
||||
func RelayTextHelper(c *gin.Context, relayMode int) *openai.ErrorWithStatusCode {
|
||||
channelType := c.GetInt("channel")
|
||||
channelId := c.GetInt("channel_id")
|
||||
tokenId := c.GetInt("token_id")
|
||||
userId := c.GetInt("id")
|
||||
group := c.GetString("group")
|
||||
var textRequest openai.GeneralOpenAIRequest
|
||||
err := common.UnmarshalBodyReusable(c, &textRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
|
||||
}
|
||||
if textRequest.MaxTokens < 0 || textRequest.MaxTokens > math.MaxInt32/2 {
|
||||
return openai.ErrorWrapper(errors.New("max_tokens is invalid"), "invalid_max_tokens", http.StatusBadRequest)
|
||||
}
|
||||
if relayMode == constant.RelayModeModerations && textRequest.Model == "" {
|
||||
textRequest.Model = "text-moderation-latest"
|
||||
}
|
||||
if relayMode == constant.RelayModeEmbeddings && textRequest.Model == "" {
|
||||
textRequest.Model = c.Param("model")
|
||||
}
|
||||
// request validation
|
||||
if textRequest.Model == "" {
|
||||
return openai.ErrorWrapper(errors.New("model is required"), "required_field_missing", http.StatusBadRequest)
|
||||
}
|
||||
switch relayMode {
|
||||
case constant.RelayModeCompletions:
|
||||
if textRequest.Prompt == "" {
|
||||
return openai.ErrorWrapper(errors.New("field prompt is required"), "required_field_missing", http.StatusBadRequest)
|
||||
}
|
||||
case constant.RelayModeChatCompletions:
|
||||
if textRequest.Messages == nil || len(textRequest.Messages) == 0 {
|
||||
return openai.ErrorWrapper(errors.New("field messages is required"), "required_field_missing", http.StatusBadRequest)
|
||||
}
|
||||
case constant.RelayModeEmbeddings:
|
||||
case constant.RelayModeModerations:
|
||||
if textRequest.Input == "" {
|
||||
return openai.ErrorWrapper(errors.New("field input is required"), "required_field_missing", http.StatusBadRequest)
|
||||
}
|
||||
case constant.RelayModeEdits:
|
||||
if textRequest.Instruction == "" {
|
||||
return openai.ErrorWrapper(errors.New("field instruction is required"), "required_field_missing", http.StatusBadRequest)
|
||||
}
|
||||
}
|
||||
// map model name
|
||||
modelMapping := c.GetString("model_mapping")
|
||||
isModelMapped := false
|
||||
if modelMapping != "" && modelMapping != "{}" {
|
||||
modelMap := make(map[string]string)
|
||||
err := json.Unmarshal([]byte(modelMapping), &modelMap)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if modelMap[textRequest.Model] != "" {
|
||||
textRequest.Model = modelMap[textRequest.Model]
|
||||
isModelMapped = true
|
||||
}
|
||||
}
|
||||
apiType := APITypeOpenAI
|
||||
switch channelType {
|
||||
case common.ChannelTypeAnthropic:
|
||||
apiType = APITypeClaude
|
||||
case common.ChannelTypeBaidu:
|
||||
apiType = APITypeBaidu
|
||||
case common.ChannelTypePaLM:
|
||||
apiType = APITypePaLM
|
||||
case common.ChannelTypeZhipu:
|
||||
apiType = APITypeZhipu
|
||||
case common.ChannelTypeAli:
|
||||
apiType = APITypeAli
|
||||
case common.ChannelTypeXunfei:
|
||||
apiType = APITypeXunfei
|
||||
case common.ChannelTypeAIProxyLibrary:
|
||||
apiType = APITypeAIProxyLibrary
|
||||
case common.ChannelTypeTencent:
|
||||
apiType = APITypeTencent
|
||||
case common.ChannelTypeGemini:
|
||||
apiType = APITypeGemini
|
||||
}
|
||||
baseURL := common.ChannelBaseURLs[channelType]
|
||||
requestURL := c.Request.URL.String()
|
||||
if c.GetString("base_url") != "" {
|
||||
baseURL = c.GetString("base_url")
|
||||
}
|
||||
fullRequestURL := util.GetFullRequestURL(baseURL, requestURL, channelType)
|
||||
switch apiType {
|
||||
case APITypeOpenAI:
|
||||
if channelType == common.ChannelTypeAzure {
|
||||
// https://learn.microsoft.com/en-us/azure/cognitive-services/openai/chatgpt-quickstart?pivots=rest-api&tabs=command-line#rest-api
|
||||
apiVersion := util.GetAPIVersion(c)
|
||||
requestURL := strings.Split(requestURL, "?")[0]
|
||||
requestURL = fmt.Sprintf("%s?api-version=%s", requestURL, apiVersion)
|
||||
baseURL = c.GetString("base_url")
|
||||
task := strings.TrimPrefix(requestURL, "/v1/")
|
||||
model_ := textRequest.Model
|
||||
model_ = strings.Replace(model_, ".", "", -1)
|
||||
// https://github.com/songquanpeng/one-api/issues/67
|
||||
model_ = strings.TrimSuffix(model_, "-0301")
|
||||
model_ = strings.TrimSuffix(model_, "-0314")
|
||||
model_ = strings.TrimSuffix(model_, "-0613")
|
||||
|
||||
requestURL = fmt.Sprintf("/openai/deployments/%s/%s", model_, task)
|
||||
fullRequestURL = util.GetFullRequestURL(baseURL, requestURL, channelType)
|
||||
}
|
||||
case APITypeClaude:
|
||||
fullRequestURL = "https://api.anthropic.com/v1/complete"
|
||||
if baseURL != "" {
|
||||
fullRequestURL = fmt.Sprintf("%s/v1/complete", baseURL)
|
||||
}
|
||||
case APITypeBaidu:
|
||||
switch textRequest.Model {
|
||||
case "ERNIE-Bot":
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions"
|
||||
case "ERNIE-Bot-turbo":
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant"
|
||||
case "ERNIE-Bot-4":
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro"
|
||||
case "BLOOMZ-7B":
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1"
|
||||
case "Embedding-V1":
|
||||
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/embedding-v1"
|
||||
}
|
||||
apiKey := c.Request.Header.Get("Authorization")
|
||||
apiKey = strings.TrimPrefix(apiKey, "Bearer ")
|
||||
var err error
|
||||
if apiKey, err = baidu.GetAccessToken(apiKey); err != nil {
|
||||
return openai.ErrorWrapper(err, "invalid_baidu_config", http.StatusInternalServerError)
|
||||
}
|
||||
fullRequestURL += "?access_token=" + apiKey
|
||||
case APITypePaLM:
|
||||
fullRequestURL = "https://generativelanguage.googleapis.com/v1beta2/models/chat-bison-001:generateMessage"
|
||||
if baseURL != "" {
|
||||
fullRequestURL = fmt.Sprintf("%s/v1beta2/models/chat-bison-001:generateMessage", baseURL)
|
||||
}
|
||||
case APITypeGemini:
|
||||
requestBaseURL := "https://generativelanguage.googleapis.com"
|
||||
if baseURL != "" {
|
||||
requestBaseURL = baseURL
|
||||
}
|
||||
version := "v1"
|
||||
if c.GetString("api_version") != "" {
|
||||
version = c.GetString("api_version")
|
||||
}
|
||||
action := "generateContent"
|
||||
if textRequest.Stream {
|
||||
action = "streamGenerateContent"
|
||||
}
|
||||
fullRequestURL = fmt.Sprintf("%s/%s/models/%s:%s", requestBaseURL, version, textRequest.Model, action)
|
||||
case APITypeZhipu:
|
||||
method := "invoke"
|
||||
if textRequest.Stream {
|
||||
method = "sse-invoke"
|
||||
}
|
||||
fullRequestURL = fmt.Sprintf("https://open.bigmodel.cn/api/paas/v3/model-api/%s/%s", textRequest.Model, method)
|
||||
case APITypeAli:
|
||||
fullRequestURL = "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation"
|
||||
if relayMode == constant.RelayModeEmbeddings {
|
||||
fullRequestURL = "https://dashscope.aliyuncs.com/api/v1/services/embeddings/text-embedding/text-embedding"
|
||||
}
|
||||
case APITypeTencent:
|
||||
fullRequestURL = "https://hunyuan.cloud.tencent.com/hyllm/v1/chat/completions"
|
||||
case APITypeAIProxyLibrary:
|
||||
fullRequestURL = fmt.Sprintf("%s/api/library/ask", baseURL)
|
||||
}
|
||||
var promptTokens int
|
||||
var completionTokens int
|
||||
switch relayMode {
|
||||
case constant.RelayModeChatCompletions:
|
||||
promptTokens = openai.CountTokenMessages(textRequest.Messages, textRequest.Model)
|
||||
case constant.RelayModeCompletions:
|
||||
promptTokens = openai.CountTokenInput(textRequest.Prompt, textRequest.Model)
|
||||
case constant.RelayModeModerations:
|
||||
promptTokens = openai.CountTokenInput(textRequest.Input, textRequest.Model)
|
||||
}
|
||||
preConsumedTokens := common.PreConsumedQuota
|
||||
if textRequest.MaxTokens != 0 {
|
||||
preConsumedTokens = promptTokens + textRequest.MaxTokens
|
||||
}
|
||||
modelRatio := common.GetModelRatio(textRequest.Model)
|
||||
groupRatio := common.GetGroupRatio(group)
|
||||
ratio := modelRatio * groupRatio
|
||||
preConsumedQuota := int(float64(preConsumedTokens) * ratio)
|
||||
userQuota, err := model.CacheGetUserQuota(userId)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "get_user_quota_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if userQuota-preConsumedQuota < 0 {
|
||||
return openai.ErrorWrapper(errors.New("user quota is not enough"), "insufficient_user_quota", http.StatusForbidden)
|
||||
}
|
||||
err = model.CacheDecreaseUserQuota(userId, preConsumedQuota)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "decrease_user_quota_failed", http.StatusInternalServerError)
|
||||
}
|
||||
if userQuota > 100*preConsumedQuota {
|
||||
// in this case, we do not pre-consume quota
|
||||
// because the user has enough quota
|
||||
preConsumedQuota = 0
|
||||
common.LogInfo(c.Request.Context(), fmt.Sprintf("user %d has enough quota %d, trusted and no need to pre-consume", userId, userQuota))
|
||||
}
|
||||
if preConsumedQuota > 0 {
|
||||
err := model.PreConsumeTokenQuota(tokenId, preConsumedQuota)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "pre_consume_token_quota_failed", http.StatusForbidden)
|
||||
}
|
||||
}
|
||||
var requestBody io.Reader
|
||||
if isModelMapped {
|
||||
jsonStr, err := json.Marshal(textRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
} else {
|
||||
requestBody = c.Request.Body
|
||||
}
|
||||
switch apiType {
|
||||
case APITypeClaude:
|
||||
claudeRequest := anthropic.ConvertRequest(textRequest)
|
||||
jsonStr, err := json.Marshal(claudeRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
case APITypeBaidu:
|
||||
var jsonData []byte
|
||||
var err error
|
||||
switch relayMode {
|
||||
case constant.RelayModeEmbeddings:
|
||||
baiduEmbeddingRequest := baidu.ConvertEmbeddingRequest(textRequest)
|
||||
jsonData, err = json.Marshal(baiduEmbeddingRequest)
|
||||
default:
|
||||
baiduRequest := baidu.ConvertRequest(textRequest)
|
||||
jsonData, err = json.Marshal(baiduRequest)
|
||||
}
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonData)
|
||||
case APITypePaLM:
|
||||
palmRequest := google.ConvertPaLMRequest(textRequest)
|
||||
jsonStr, err := json.Marshal(palmRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
case APITypeGemini:
|
||||
geminiChatRequest := google.ConvertGeminiRequest(textRequest)
|
||||
jsonStr, err := json.Marshal(geminiChatRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
case APITypeZhipu:
|
||||
zhipuRequest := zhipu.ConvertRequest(textRequest)
|
||||
jsonStr, err := json.Marshal(zhipuRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
case APITypeAli:
|
||||
var jsonStr []byte
|
||||
var err error
|
||||
switch relayMode {
|
||||
case constant.RelayModeEmbeddings:
|
||||
aliEmbeddingRequest := ali.ConvertEmbeddingRequest(textRequest)
|
||||
jsonStr, err = json.Marshal(aliEmbeddingRequest)
|
||||
default:
|
||||
aliRequest := ali.ConvertRequest(textRequest)
|
||||
jsonStr, err = json.Marshal(aliRequest)
|
||||
}
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
case APITypeTencent:
|
||||
apiKey := c.Request.Header.Get("Authorization")
|
||||
apiKey = strings.TrimPrefix(apiKey, "Bearer ")
|
||||
appId, secretId, secretKey, err := tencent.ParseConfig(apiKey)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "invalid_tencent_config", http.StatusInternalServerError)
|
||||
}
|
||||
tencentRequest := tencent.ConvertRequest(textRequest)
|
||||
tencentRequest.AppId = appId
|
||||
tencentRequest.SecretId = secretId
|
||||
jsonStr, err := json.Marshal(tencentRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
sign := tencent.GetSign(*tencentRequest, secretKey)
|
||||
c.Request.Header.Set("Authorization", sign)
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
case APITypeAIProxyLibrary:
|
||||
aiProxyLibraryRequest := aiproxy.ConvertRequest(textRequest)
|
||||
aiProxyLibraryRequest.LibraryId = c.GetString("library_id")
|
||||
jsonStr, err := json.Marshal(aiProxyLibraryRequest)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
requestBody = bytes.NewBuffer(jsonStr)
|
||||
}
|
||||
|
||||
var req *http.Request
|
||||
var resp *http.Response
|
||||
isStream := textRequest.Stream
|
||||
|
||||
if apiType != APITypeXunfei { // cause xunfei use websocket
|
||||
req, err = http.NewRequest(c.Request.Method, fullRequestURL, requestBody)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
apiKey := c.Request.Header.Get("Authorization")
|
||||
apiKey = strings.TrimPrefix(apiKey, "Bearer ")
|
||||
switch apiType {
|
||||
case APITypeOpenAI:
|
||||
if channelType == common.ChannelTypeAzure {
|
||||
req.Header.Set("api-key", apiKey)
|
||||
} else {
|
||||
req.Header.Set("Authorization", c.Request.Header.Get("Authorization"))
|
||||
if channelType == common.ChannelTypeOpenRouter {
|
||||
req.Header.Set("HTTP-Referer", "https://github.com/songquanpeng/one-api")
|
||||
req.Header.Set("X-Title", "One API")
|
||||
}
|
||||
}
|
||||
case APITypeClaude:
|
||||
req.Header.Set("x-api-key", apiKey)
|
||||
anthropicVersion := c.Request.Header.Get("anthropic-version")
|
||||
if anthropicVersion == "" {
|
||||
anthropicVersion = "2023-06-01"
|
||||
}
|
||||
req.Header.Set("anthropic-version", anthropicVersion)
|
||||
case APITypeZhipu:
|
||||
token := zhipu.GetToken(apiKey)
|
||||
req.Header.Set("Authorization", token)
|
||||
case APITypeAli:
|
||||
req.Header.Set("Authorization", "Bearer "+apiKey)
|
||||
if textRequest.Stream {
|
||||
req.Header.Set("X-DashScope-SSE", "enable")
|
||||
}
|
||||
if c.GetString("plugin") != "" {
|
||||
req.Header.Set("X-DashScope-Plugin", c.GetString("plugin"))
|
||||
}
|
||||
case APITypeTencent:
|
||||
req.Header.Set("Authorization", apiKey)
|
||||
case APITypePaLM:
|
||||
req.Header.Set("x-goog-api-key", apiKey)
|
||||
case APITypeGemini:
|
||||
req.Header.Set("x-goog-api-key", apiKey)
|
||||
default:
|
||||
req.Header.Set("Authorization", "Bearer "+apiKey)
|
||||
}
|
||||
req.Header.Set("Content-Type", c.Request.Header.Get("Content-Type"))
|
||||
req.Header.Set("Accept", c.Request.Header.Get("Accept"))
|
||||
if isStream && c.Request.Header.Get("Accept") == "" {
|
||||
req.Header.Set("Accept", "text/event-stream")
|
||||
}
|
||||
//req.Header.Set("Connection", c.Request.Header.Get("Connection"))
|
||||
resp, err = util.HTTPClient.Do(req)
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "do_request_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = req.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
err = c.Request.Body.Close()
|
||||
if err != nil {
|
||||
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
|
||||
}
|
||||
isStream = isStream || strings.HasPrefix(resp.Header.Get("Content-Type"), "text/event-stream")
|
||||
|
||||
if resp.StatusCode != http.StatusOK {
|
||||
if preConsumedQuota != 0 {
|
||||
go func(ctx context.Context) {
|
||||
// return pre-consumed quota
|
||||
err := model.PostConsumeTokenQuota(tokenId, -preConsumedQuota)
|
||||
if err != nil {
|
||||
common.LogError(ctx, "error return pre-consumed quota: "+err.Error())
|
||||
}
|
||||
}(c.Request.Context())
|
||||
}
|
||||
return util.RelayErrorHandler(resp)
|
||||
}
|
||||
}
|
||||
|
||||
var textResponse openai.SlimTextResponse
|
||||
tokenName := c.GetString("token_name")
|
||||
|
||||
defer func(ctx context.Context) {
|
||||
// c.Writer.Flush()
|
||||
go func() {
|
||||
quota := 0
|
||||
completionRatio := common.GetCompletionRatio(textRequest.Model)
|
||||
promptTokens = textResponse.Usage.PromptTokens
|
||||
completionTokens = textResponse.Usage.CompletionTokens
|
||||
quota = int(math.Ceil((float64(promptTokens) + float64(completionTokens)*completionRatio) * ratio))
|
||||
if ratio != 0 && quota <= 0 {
|
||||
quota = 1
|
||||
}
|
||||
totalTokens := promptTokens + completionTokens
|
||||
if totalTokens == 0 {
|
||||
// in this case, must be some error happened
|
||||
// we cannot just return, because we may have to return the pre-consumed quota
|
||||
quota = 0
|
||||
}
|
||||
quotaDelta := quota - preConsumedQuota
|
||||
err := model.PostConsumeTokenQuota(tokenId, quotaDelta)
|
||||
if err != nil {
|
||||
common.LogError(ctx, "error consuming token remain quota: "+err.Error())
|
||||
}
|
||||
err = model.CacheUpdateUserQuota(userId)
|
||||
if err != nil {
|
||||
common.LogError(ctx, "error update user quota cache: "+err.Error())
|
||||
}
|
||||
if quota != 0 {
|
||||
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f", modelRatio, groupRatio)
|
||||
model.RecordConsumeLog(ctx, userId, channelId, promptTokens, completionTokens, textRequest.Model, tokenName, quota, logContent)
|
||||
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
|
||||
model.UpdateChannelUsedQuota(channelId, quota)
|
||||
}
|
||||
|
||||
}()
|
||||
}(c.Request.Context())
|
||||
switch apiType {
|
||||
case APITypeOpenAI:
|
||||
if isStream {
|
||||
err, responseText := openai.StreamHandler(c, resp, relayMode)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
textResponse.Usage.PromptTokens = promptTokens
|
||||
textResponse.Usage.CompletionTokens = openai.CountTokenText(responseText, textRequest.Model)
|
||||
return nil
|
||||
} else {
|
||||
err, usage := openai.Handler(c, resp, promptTokens, textRequest.Model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypeClaude:
|
||||
if isStream {
|
||||
err, responseText := anthropic.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
textResponse.Usage.PromptTokens = promptTokens
|
||||
textResponse.Usage.CompletionTokens = openai.CountTokenText(responseText, textRequest.Model)
|
||||
return nil
|
||||
} else {
|
||||
err, usage := anthropic.Handler(c, resp, promptTokens, textRequest.Model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypeBaidu:
|
||||
if isStream {
|
||||
err, usage := baidu.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
} else {
|
||||
var err *openai.ErrorWithStatusCode
|
||||
var usage *openai.Usage
|
||||
switch relayMode {
|
||||
case constant.RelayModeEmbeddings:
|
||||
err, usage = baidu.EmbeddingHandler(c, resp)
|
||||
default:
|
||||
err, usage = baidu.Handler(c, resp)
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypePaLM:
|
||||
if textRequest.Stream { // PaLM2 API does not support stream
|
||||
err, responseText := google.PaLMStreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
textResponse.Usage.PromptTokens = promptTokens
|
||||
textResponse.Usage.CompletionTokens = openai.CountTokenText(responseText, textRequest.Model)
|
||||
return nil
|
||||
} else {
|
||||
err, usage := google.PaLMHandler(c, resp, promptTokens, textRequest.Model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypeGemini:
|
||||
if textRequest.Stream {
|
||||
err, responseText := google.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
textResponse.Usage.PromptTokens = promptTokens
|
||||
textResponse.Usage.CompletionTokens = openai.CountTokenText(responseText, textRequest.Model)
|
||||
return nil
|
||||
} else {
|
||||
err, usage := google.GeminiHandler(c, resp, promptTokens, textRequest.Model)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypeZhipu:
|
||||
if isStream {
|
||||
err, usage := zhipu.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
// zhipu's API does not return prompt tokens & completion tokens
|
||||
textResponse.Usage.PromptTokens = textResponse.Usage.TotalTokens
|
||||
return nil
|
||||
} else {
|
||||
err, usage := zhipu.Handler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
// zhipu's API does not return prompt tokens & completion tokens
|
||||
textResponse.Usage.PromptTokens = textResponse.Usage.TotalTokens
|
||||
return nil
|
||||
}
|
||||
case APITypeAli:
|
||||
if isStream {
|
||||
err, usage := ali.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
} else {
|
||||
var err *openai.ErrorWithStatusCode
|
||||
var usage *openai.Usage
|
||||
switch relayMode {
|
||||
case constant.RelayModeEmbeddings:
|
||||
err, usage = ali.EmbeddingHandler(c, resp)
|
||||
default:
|
||||
err, usage = ali.Handler(c, resp)
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypeXunfei:
|
||||
auth := c.Request.Header.Get("Authorization")
|
||||
auth = strings.TrimPrefix(auth, "Bearer ")
|
||||
splits := strings.Split(auth, "|")
|
||||
if len(splits) != 3 {
|
||||
return openai.ErrorWrapper(errors.New("invalid auth"), "invalid_auth", http.StatusBadRequest)
|
||||
}
|
||||
var err *openai.ErrorWithStatusCode
|
||||
var usage *openai.Usage
|
||||
if isStream {
|
||||
err, usage = xunfei.StreamHandler(c, textRequest, splits[0], splits[1], splits[2])
|
||||
} else {
|
||||
err, usage = xunfei.Handler(c, textRequest, splits[0], splits[1], splits[2])
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
case APITypeAIProxyLibrary:
|
||||
if isStream {
|
||||
err, usage := aiproxy.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
} else {
|
||||
err, usage := aiproxy.Handler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
case APITypeTencent:
|
||||
if isStream {
|
||||
err, responseText := tencent.StreamHandler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
textResponse.Usage.PromptTokens = promptTokens
|
||||
textResponse.Usage.CompletionTokens = openai.CountTokenText(responseText, textRequest.Model)
|
||||
return nil
|
||||
} else {
|
||||
err, usage := tencent.Handler(c, resp)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if usage != nil {
|
||||
textResponse.Usage = *usage
|
||||
}
|
||||
return nil
|
||||
}
|
||||
default:
|
||||
return openai.ErrorWrapper(errors.New("unknown api type"), "unknown_api_type", http.StatusInternalServerError)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user