This commit is contained in:
RandyZhang 2025-05-10 15:17:24 +08:00 committed by GitHub
commit e392fdbf60
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 217 additions and 18 deletions

View File

@ -435,3 +435,17 @@ func EmbeddingHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStat
_, err = c.Writer.Write(jsonResponse) _, err = c.Writer.Write(jsonResponse)
return nil, &fullTextResponse.Usage return nil, &fullTextResponse.Usage
} }
func EmbeddingResponseHandler(c *gin.Context, statusCode int, resp *openai.EmbeddingResponse) (*model.ErrorWithStatusCode, *model.Usage) {
jsonResponse, err := json.Marshal(resp)
if err != nil {
return openai.ErrorWrapper(err, "marshal_response_body_failed", http.StatusInternalServerError), nil
}
c.Writer.Header().Set("Content-Type", "application/json")
c.Writer.WriteHeader(statusCode)
_, err = c.Writer.Write(jsonResponse)
if err != nil {
return openai.ErrorWrapper(err, "write_response_body_failed", http.StatusInternalServerError), nil
}
return nil, &resp.Usage
}

View File

@ -61,12 +61,15 @@ func (a *Adaptor) GetChannelName() string {
func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) { func (a *Adaptor) GetRequestURL(meta *meta.Meta) (string, error) {
suffix := "" suffix := ""
if strings.HasPrefix(meta.ActualModelName, "gemini") { modelType := PredictModelType(meta.ActualModelName)
if modelType == VertexAIGemini {
if meta.IsStream { if meta.IsStream {
suffix = "streamGenerateContent?alt=sse" suffix = "streamGenerateContent?alt=sse"
} else { } else {
suffix = "generateContent" suffix = "generateContent"
} }
} else if modelType == VertexAIEmbedding {
suffix = "predict"
} else { } else {
if meta.IsStream { if meta.IsStream {
suffix = "streamRawPredict?alt=sse" suffix = "streamRawPredict?alt=sse"
@ -115,3 +118,13 @@ func (a *Adaptor) ConvertImageRequest(request *model.ImageRequest) (any, error)
func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) { func (a *Adaptor) DoRequest(c *gin.Context, meta *meta.Meta, requestBody io.Reader) (*http.Response, error) {
return channelhelper.DoRequestHelper(a, c, meta, requestBody) return channelhelper.DoRequestHelper(a, c, meta, requestBody)
} }
func PredictModelType(model string) VertexAIModelType {
if strings.HasPrefix(model, "gemini-") {
return VertexAIGemini
}
if strings.HasPrefix(model, "text-embedding") || strings.HasPrefix(model, "text-multilingual-embedding") {
return VertexAIEmbedding
}
return VertexAIClaude
}

View File

@ -0,0 +1,107 @@
package vertexai
import (
"encoding/json"
"io"
"net/http"
"strings"
"github.com/songquanpeng/one-api/relay/adaptor/gemini"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
model2 "github.com/songquanpeng/one-api/relay/adaptor/vertexai/model"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
var ModelList = []string{
"textembedding-gecko-multilingual@001", "text-multilingual-embedding-002",
}
type Adaptor struct {
model string
task EmbeddingTaskType
}
var _ model2.InnerAIAdapter = (*Adaptor)(nil)
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
inputs := request.ParseInput()
if len(inputs) == 0 {
return nil, errors.New("request is nil")
}
parts := strings.Split(request.Model, "|")
if len(parts) >= 2 {
a.task = EmbeddingTaskType(parts[1])
} else {
a.task = EmbeddingTaskTypeSemanticSimilarity
}
a.model = parts[0]
instances := make([]EmbeddingInstance, len(inputs))
for i, input := range inputs {
instances[i] = EmbeddingInstance{
Content: input,
TaskType: a.task,
}
}
embeddingRequest := EmbeddingRequest{
Instances: instances,
Parameters: EmbeddingParams{
OutputDimensionality: request.Dimensions,
},
}
return embeddingRequest, nil
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
err, usage = EmbeddingHandler(c, a.model, resp)
return
}
func EmbeddingHandler(c *gin.Context, modelName string, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var vertexEmbeddingResponse EmbeddingResponse
responseBody, err := io.ReadAll(resp.Body)
if resp.StatusCode != http.StatusOK {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &vertexEmbeddingResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
openaiResp := &openai.EmbeddingResponse{
Model: modelName,
Data: make([]openai.EmbeddingResponseItem, 0, len(vertexEmbeddingResponse.Predictions)),
Usage: model.Usage{
TotalTokens: 0,
},
}
for i, pred := range vertexEmbeddingResponse.Predictions {
openaiResp.Data = append(openaiResp.Data, openai.EmbeddingResponseItem{
Index: i,
Embedding: pred.Embeddings.Values,
})
}
for _, pred := range vertexEmbeddingResponse.Predictions {
openaiResp.Usage.TotalTokens += pred.Embeddings.Statistics.TokenCount
}
return gemini.EmbeddingResponseHandler(c, resp.StatusCode, openaiResp)
}

View File

@ -0,0 +1,45 @@
package vertexai
type EmbeddingTaskType string
const (
EmbeddingTaskTypeRetrievalQuery EmbeddingTaskType = "RETRIEVAL_QUERY"
EmbeddingTaskTypeRetrievalDocument EmbeddingTaskType = "RETRIEVAL_DOCUMENT"
EmbeddingTaskTypeSemanticSimilarity EmbeddingTaskType = "SEMANTIC_SIMILARITY"
EmbeddingTaskTypeClassification EmbeddingTaskType = "CLASSIFICATION"
EmbeddingTaskTypeClustering EmbeddingTaskType = "CLUSTERING"
EmbeddingTaskTypeQuestionAnswering EmbeddingTaskType = "QUESTION_ANSWERING"
EmbeddingTaskTypeFactVerification EmbeddingTaskType = "FACT_VERIFICATION"
EmbeddingTaskTypeCodeRetrievalQuery EmbeddingTaskType = "CODE_RETRIEVAL_QUERY"
)
type EmbeddingRequest struct {
Instances []EmbeddingInstance `json:"instances"`
Parameters EmbeddingParams `json:"parameters"`
}
type EmbeddingInstance struct {
Content string `json:"content"`
TaskType EmbeddingTaskType `json:"task_type,omitempty"`
Title string `json:"title,omitempty"`
}
type EmbeddingParams struct {
AutoTruncate bool `json:"autoTruncate,omitempty"`
OutputDimensionality int `json:"outputDimensionality,omitempty"`
// Texts []string `json:"texts,omitempty"`
}
type EmbeddingResponse struct {
Predictions []struct {
Embeddings EmbeddingData `json:"embeddings"`
} `json:"predictions"`
}
type EmbeddingData struct {
Statistics struct {
Truncated bool `json:"truncated"`
TokenCount int `json:"token_count"`
} `json:"statistics"`
Values []float64 `json:"values"`
}

View File

@ -0,0 +1,13 @@
package model
import (
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
"net/http"
)
type InnerAIAdapter interface {
ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error)
DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode)
}

View File

@ -1,20 +1,18 @@
package vertexai package vertexai
import ( import (
"net/http"
"github.com/gin-gonic/gin"
claude "github.com/songquanpeng/one-api/relay/adaptor/vertexai/claude" claude "github.com/songquanpeng/one-api/relay/adaptor/vertexai/claude"
embedding "github.com/songquanpeng/one-api/relay/adaptor/vertexai/embedding"
gemini "github.com/songquanpeng/one-api/relay/adaptor/vertexai/gemini" gemini "github.com/songquanpeng/one-api/relay/adaptor/vertexai/gemini"
"github.com/songquanpeng/one-api/relay/meta" "github.com/songquanpeng/one-api/relay/adaptor/vertexai/model"
"github.com/songquanpeng/one-api/relay/model"
) )
type VertexAIModelType int type VertexAIModelType int
const ( const (
VerterAIClaude VertexAIModelType = iota + 1 VertexAIClaude VertexAIModelType = iota + 1
VerterAIGemini VertexAIGemini
VertexAIEmbedding
) )
var modelMapping = map[string]VertexAIModelType{} var modelMapping = map[string]VertexAIModelType{}
@ -23,28 +21,37 @@ var modelList = []string{}
func init() { func init() {
modelList = append(modelList, claude.ModelList...) modelList = append(modelList, claude.ModelList...)
for _, model := range claude.ModelList { for _, model := range claude.ModelList {
modelMapping[model] = VerterAIClaude modelMapping[model] = VertexAIClaude
} }
modelList = append(modelList, gemini.ModelList...) modelList = append(modelList, gemini.ModelList...)
for _, model := range gemini.ModelList { for _, model := range gemini.ModelList {
modelMapping[model] = VerterAIGemini modelMapping[model] = VertexAIGemini
}
modelList = append(modelList, embedding.ModelList...)
for _, model := range embedding.ModelList {
modelMapping[model] = VertexAIEmbedding
} }
} }
type innerAIAdapter interface { func GetAdaptor(model string) model.InnerAIAdapter {
ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error)
DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode)
}
func GetAdaptor(model string) innerAIAdapter {
adaptorType := modelMapping[model] adaptorType := modelMapping[model]
switch adaptorType { switch adaptorType {
case VerterAIClaude: case VertexAIClaude:
return &claude.Adaptor{} return &claude.Adaptor{}
case VerterAIGemini: case VertexAIGemini:
return &gemini.Adaptor{} return &gemini.Adaptor{}
case VertexAIEmbedding:
return &embedding.Adaptor{}
default: default:
adaptorType = PredictModelType(model)
switch adaptorType {
case VertexAIGemini:
return &gemini.Adaptor{}
case VertexAIEmbedding:
return &embedding.Adaptor{}
}
return nil return nil
} }
} }