one-api/relay/adaptor/vertexai/embedding/adapter.go

121 lines
3.4 KiB
Go

package vertexai
import (
"encoding/json"
"io"
"net/http"
"net/url"
"strings"
"github.com/songquanpeng/one-api/relay/adaptor/gemini"
"github.com/songquanpeng/one-api/relay/adaptor/openai"
model2 "github.com/songquanpeng/one-api/relay/adaptor/vertexai/model"
"github.com/gin-gonic/gin"
"github.com/pkg/errors"
"github.com/songquanpeng/one-api/relay/meta"
"github.com/songquanpeng/one-api/relay/model"
)
var ModelList = []string{
"textembedding-gecko-multilingual@001", "text-multilingual-embedding-002",
}
type Adaptor struct {
}
var _ model2.InnerAIAdapter = (*Adaptor)(nil)
func (a *Adaptor) parseEmbeddingTaskType(model string) (string, EmbeddingTaskType) {
modelTaskType := EmbeddingTaskTypeNone
if strings.Contains(model, "?") {
parts := strings.Split(model, "?")
modelName := parts[0]
if len(parts) >= 2 {
modelOptions, err := url.ParseQuery(parts[1])
if err == nil {
modelTaskType = EmbeddingTaskType(modelOptions.Get("task_type"))
}
}
return modelName, modelTaskType
}
return model, modelTaskType
}
func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.GeneralOpenAIRequest) (any, error) {
if request == nil {
return nil, errors.New("request is nil")
}
inputs := request.ParseInput()
if len(inputs) == 0 {
return nil, errors.New("request is nil")
}
_, modelTaskType := a.parseEmbeddingTaskType(request.Model)
instances := make([]EmbeddingInstance, len(inputs))
for i, input := range inputs {
instances[i] = EmbeddingInstance{
Content: input,
TaskType: modelTaskType,
}
}
embeddingRequest := EmbeddingRequest{
Instances: instances,
Parameters: EmbeddingParams{
OutputDimensionality: request.Dimensions,
},
}
return embeddingRequest, nil
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *meta.Meta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
modelName := ""
if meta != nil {
modelName = meta.ActualModelName
}
err, usage = EmbeddingHandler(c, modelName, resp)
return
}
func EmbeddingHandler(c *gin.Context, modelName string, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
var vertexEmbeddingResponse EmbeddingResponse
responseBody, err := io.ReadAll(resp.Body)
if resp.StatusCode != http.StatusOK {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
if err != nil {
return openai.ErrorWrapper(err, "read_response_body_failed", http.StatusInternalServerError), nil
}
err = resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), nil
}
err = json.Unmarshal(responseBody, &vertexEmbeddingResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError), nil
}
openaiResp := &openai.EmbeddingResponse{
Model: modelName,
Data: make([]openai.EmbeddingResponseItem, 0, len(vertexEmbeddingResponse.Predictions)),
Usage: model.Usage{
TotalTokens: 0,
},
}
for i, pred := range vertexEmbeddingResponse.Predictions {
openaiResp.Data = append(openaiResp.Data, openai.EmbeddingResponseItem{
Index: i,
Embedding: pred.Embeddings.Values,
})
}
for _, pred := range vertexEmbeddingResponse.Predictions {
openaiResp.Usage.TotalTokens += pred.Embeddings.Statistics.TokenCount
}
return gemini.EmbeddingResponseHandler(c, resp.StatusCode, openaiResp)
}