mirror of
https://github.com/songquanpeng/one-api.git
synced 2025-09-29 06:36:38 +08:00
258 lines
7.5 KiB
Go
258 lines
7.5 KiB
Go
package common
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"strings"
|
|
|
|
"one-api/common/image"
|
|
"one-api/types"
|
|
|
|
"github.com/MartialBE/tiktoken-go"
|
|
"github.com/spf13/viper"
|
|
)
|
|
|
|
var tokenEncoderMap = map[string]*tiktoken.Tiktoken{}
|
|
var gpt35TokenEncoder *tiktoken.Tiktoken
|
|
var gpt4TokenEncoder *tiktoken.Tiktoken
|
|
var gpt4oTokenEncoder *tiktoken.Tiktoken
|
|
|
|
func InitTokenEncoders() {
|
|
if viper.GetBool("disable_token_encoders") {
|
|
DISABLE_TOKEN_ENCODERS = true
|
|
SysLog("token encoders disabled")
|
|
return
|
|
}
|
|
SysLog("initializing token encoders")
|
|
var err error
|
|
gpt35TokenEncoder, err = tiktoken.EncodingForModel("gpt-3.5-turbo")
|
|
if err != nil {
|
|
FatalLog(fmt.Sprintf("failed to get gpt-3.5-turbo token encoder: %s", err.Error()))
|
|
}
|
|
|
|
gpt4TokenEncoder, err = tiktoken.EncodingForModel("gpt-4")
|
|
if err != nil {
|
|
FatalLog(fmt.Sprintf("failed to get gpt-4 token encoder: %s", err.Error()))
|
|
}
|
|
|
|
gpt4oTokenEncoder, err = tiktoken.EncodingForModel("gpt-4o")
|
|
if err != nil {
|
|
FatalLog(fmt.Sprintf("failed to get gpt-4o token encoder: %s", err.Error()))
|
|
}
|
|
|
|
SysLog("token encoders initialized")
|
|
}
|
|
|
|
func getTokenEncoder(model string) *tiktoken.Tiktoken {
|
|
if DISABLE_TOKEN_ENCODERS {
|
|
return nil
|
|
}
|
|
|
|
tokenEncoder, ok := tokenEncoderMap[model]
|
|
if ok {
|
|
return tokenEncoder
|
|
}
|
|
|
|
if strings.HasPrefix(model, "gpt-3.5") {
|
|
tokenEncoder = gpt35TokenEncoder
|
|
} else if strings.HasPrefix(model, "gpt-4o") {
|
|
tokenEncoder = gpt4oTokenEncoder
|
|
} else if strings.HasPrefix(model, "gpt-4") {
|
|
tokenEncoder = gpt4TokenEncoder
|
|
} else {
|
|
var err error
|
|
tokenEncoder, err = tiktoken.EncodingForModel(model)
|
|
if err != nil {
|
|
SysError(fmt.Sprintf("failed to get token encoder for model %s: %s, using encoder for gpt-3.5-turbo", model, err.Error()))
|
|
tokenEncoder = gpt35TokenEncoder
|
|
}
|
|
}
|
|
|
|
tokenEncoderMap[model] = tokenEncoder
|
|
return tokenEncoder
|
|
}
|
|
|
|
func getTokenNum(tokenEncoder *tiktoken.Tiktoken, text string) int {
|
|
if DISABLE_TOKEN_ENCODERS || ApproximateTokenEnabled {
|
|
return int(float64(len(text)) * 0.38)
|
|
}
|
|
return len(tokenEncoder.Encode(text, nil, nil))
|
|
}
|
|
|
|
func CountTokenMessages(messages []types.ChatCompletionMessage, model string) int {
|
|
tokenEncoder := getTokenEncoder(model)
|
|
// Reference:
|
|
// https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
|
|
// https://github.com/pkoukk/tiktoken-go/issues/6
|
|
//
|
|
// Every message follows <|start|>{role/name}\n{content}<|end|>\n
|
|
var tokensPerMessage int
|
|
var tokensPerName int
|
|
if model == "gpt-3.5-turbo-0301" {
|
|
tokensPerMessage = 4
|
|
tokensPerName = -1 // If there's a name, the role is omitted
|
|
} else {
|
|
tokensPerMessage = 3
|
|
tokensPerName = 1
|
|
}
|
|
tokenNum := 0
|
|
for _, message := range messages {
|
|
tokenNum += tokensPerMessage
|
|
switch v := message.Content.(type) {
|
|
case string:
|
|
tokenNum += getTokenNum(tokenEncoder, v)
|
|
case []any:
|
|
for _, it := range v {
|
|
m := it.(map[string]any)
|
|
switch m["type"] {
|
|
case "text":
|
|
tokenNum += getTokenNum(tokenEncoder, m["text"].(string))
|
|
case "image_url":
|
|
imageUrl, ok := m["image_url"].(map[string]any)
|
|
if ok {
|
|
url := imageUrl["url"].(string)
|
|
detail := ""
|
|
if imageUrl["detail"] != nil {
|
|
detail = imageUrl["detail"].(string)
|
|
}
|
|
imageTokens, err := countImageTokens(url, detail)
|
|
if err != nil {
|
|
//Due to the excessive length of the error information, only extract and record the most critical part.
|
|
SysError("error counting image tokens: " + err.Error())
|
|
} else {
|
|
tokenNum += imageTokens
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
tokenNum += getTokenNum(tokenEncoder, message.Role)
|
|
if message.Name != nil {
|
|
tokenNum += tokensPerName
|
|
tokenNum += getTokenNum(tokenEncoder, *message.Name)
|
|
}
|
|
}
|
|
tokenNum += 3 // Every reply is primed with <|start|>assistant<|message|>
|
|
return tokenNum
|
|
}
|
|
|
|
const (
|
|
lowDetailCost = 85
|
|
highDetailCostPerTile = 170
|
|
additionalCost = 85
|
|
)
|
|
|
|
// https://platform.openai.com/docs/guides/vision/calculating-costs
|
|
// https://github.com/openai/openai-cookbook/blob/05e3f9be4c7a2ae7ecf029a7c32065b024730ebe/examples/How_to_count_tokens_with_tiktoken.ipynb
|
|
func countImageTokens(url string, detail string) (_ int, err error) {
|
|
var fetchSize = true
|
|
var width, height int
|
|
// Reference: https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding
|
|
// detail == "auto" is undocumented on how it works, it just said the model will use the auto setting which will look at the image input size and decide if it should use the low or high setting.
|
|
// According to the official guide, "low" disable the high-res model,
|
|
// and only receive low-res 512px x 512px version of the image, indicating
|
|
// that image is treated as low-res when size is smaller than 512px x 512px,
|
|
// then we can assume that image size larger than 512px x 512px is treated
|
|
// as high-res. Then we have the following logic:
|
|
// if detail == "" || detail == "auto" {
|
|
// width, height, err = image.GetImageSize(url)
|
|
// if err != nil {
|
|
// return 0, err
|
|
// }
|
|
// fetchSize = false
|
|
// // not sure if this is correct
|
|
// if width > 512 || height > 512 {
|
|
// detail = "high"
|
|
// } else {
|
|
// detail = "low"
|
|
// }
|
|
// }
|
|
|
|
// However, in my test, it seems to be always the same as "high".
|
|
// The following image, which is 125x50, is still treated as high-res, taken
|
|
// 255 tokens in the response of non-stream chat completion api.
|
|
// https://upload.wikimedia.org/wikipedia/commons/1/10/18_Infantry_Division_Messina.jpg
|
|
if detail == "" || detail == "auto" {
|
|
// assume by test, not sure if this is correct
|
|
detail = "high"
|
|
}
|
|
switch detail {
|
|
case "low":
|
|
return lowDetailCost, nil
|
|
case "high":
|
|
if fetchSize {
|
|
width, height, err = image.GetImageSize(url)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
if width > 2048 || height > 2048 { // max(width, height) > 2048
|
|
ratio := float64(2048) / math.Max(float64(width), float64(height))
|
|
width = int(float64(width) * ratio)
|
|
height = int(float64(height) * ratio)
|
|
}
|
|
if width > 768 && height > 768 { // min(width, height) > 768
|
|
ratio := float64(768) / math.Min(float64(width), float64(height))
|
|
width = int(float64(width) * ratio)
|
|
height = int(float64(height) * ratio)
|
|
}
|
|
numSquares := int(math.Ceil(float64(width)/512) * math.Ceil(float64(height)/512))
|
|
result := numSquares*highDetailCostPerTile + additionalCost
|
|
return result, nil
|
|
default:
|
|
return 0, errors.New("invalid detail option")
|
|
}
|
|
}
|
|
|
|
func CountTokenInput(input any, model string) int {
|
|
switch v := input.(type) {
|
|
case string:
|
|
return CountTokenText(v, model)
|
|
case []string:
|
|
text := ""
|
|
for _, s := range v {
|
|
text += s
|
|
}
|
|
return CountTokenText(text, model)
|
|
}
|
|
return 0
|
|
}
|
|
|
|
func CountTokenText(text string, model string) int {
|
|
tokenEncoder := getTokenEncoder(model)
|
|
return getTokenNum(tokenEncoder, text)
|
|
}
|
|
|
|
func CountTokenImage(input interface{}) (int, error) {
|
|
switch v := input.(type) {
|
|
case types.ImageRequest:
|
|
// 处理 ImageRequest
|
|
return calculateToken(v.Model, v.Size, v.N, v.Quality)
|
|
case types.ImageEditRequest:
|
|
// 处理 ImageEditsRequest
|
|
return calculateToken(v.Model, v.Size, v.N, "")
|
|
default:
|
|
return 0, errors.New("unsupported type")
|
|
}
|
|
}
|
|
|
|
func calculateToken(model string, size string, n int, quality string) (int, error) {
|
|
imageCostRatio, hasValidSize := DalleSizeRatios[model][size]
|
|
|
|
if hasValidSize {
|
|
if quality == "hd" && model == "dall-e-3" {
|
|
if size == "1024x1024" {
|
|
imageCostRatio *= 2
|
|
} else {
|
|
imageCostRatio *= 1.5
|
|
}
|
|
}
|
|
} else {
|
|
imageCostRatio = 1
|
|
// return 0, errors.New("size not supported for this image model")
|
|
}
|
|
|
|
return int(imageCostRatio*1000) * n, nil
|
|
}
|