one-api/providers/gemini/chat.go

279 lines
7.5 KiB
Go

package gemini
import (
"encoding/json"
"fmt"
"net/http"
"one-api/common"
"one-api/common/requester"
"one-api/common/utils"
"one-api/types"
"strings"
)
const (
GeminiVisionMaxImageNum = 16
)
type geminiStreamHandler struct {
Usage *types.Usage
Request *types.ChatCompletionRequest
}
func (p *GeminiProvider) CreateChatCompletion(request *types.ChatCompletionRequest) (*types.ChatCompletionResponse, *types.OpenAIErrorWithStatusCode) {
req, errWithCode := p.getChatRequest(request)
if errWithCode != nil {
return nil, errWithCode
}
defer req.Body.Close()
geminiChatResponse := &GeminiChatResponse{}
// 发送请求
_, errWithCode = p.Requester.SendRequest(req, geminiChatResponse, false)
if errWithCode != nil {
return nil, errWithCode
}
return p.convertToChatOpenai(geminiChatResponse, request)
}
func (p *GeminiProvider) CreateChatCompletionStream(request *types.ChatCompletionRequest) (requester.StreamReaderInterface[string], *types.OpenAIErrorWithStatusCode) {
req, errWithCode := p.getChatRequest(request)
if errWithCode != nil {
return nil, errWithCode
}
defer req.Body.Close()
// 发送请求
resp, errWithCode := p.Requester.SendRequestRaw(req)
if errWithCode != nil {
return nil, errWithCode
}
chatHandler := &geminiStreamHandler{
Usage: p.Usage,
Request: request,
}
return requester.RequestStream[string](p.Requester, resp, chatHandler.handlerStream)
}
func (p *GeminiProvider) getChatRequest(request *types.ChatCompletionRequest) (*http.Request, *types.OpenAIErrorWithStatusCode) {
url := "generateContent"
if request.Stream {
url = "streamGenerateContent?alt=sse"
}
// 获取请求地址
fullRequestURL := p.GetFullRequestURL(url, request.Model)
// 获取请求头
headers := p.GetRequestHeaders()
if request.Stream {
headers["Accept"] = "text/event-stream"
}
geminiRequest, errWithCode := convertFromChatOpenai(request)
if errWithCode != nil {
return nil, errWithCode
}
// 创建请求
req, err := p.Requester.NewRequest(http.MethodPost, fullRequestURL, p.Requester.WithBody(geminiRequest), p.Requester.WithHeader(headers))
if err != nil {
return nil, common.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
}
return req, nil
}
func convertFromChatOpenai(request *types.ChatCompletionRequest) (*GeminiChatRequest, *types.OpenAIErrorWithStatusCode) {
request.ClearEmptyMessages()
geminiRequest := GeminiChatRequest{
Contents: make([]GeminiChatContent, 0, len(request.Messages)),
SafetySettings: []GeminiChatSafetySettings{
{
Category: "HARM_CATEGORY_HARASSMENT",
Threshold: "BLOCK_NONE",
},
{
Category: "HARM_CATEGORY_HATE_SPEECH",
Threshold: "BLOCK_NONE",
},
{
Category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
Threshold: "BLOCK_NONE",
},
{
Category: "HARM_CATEGORY_DANGEROUS_CONTENT",
Threshold: "BLOCK_NONE",
},
},
GenerationConfig: GeminiChatGenerationConfig{
Temperature: request.Temperature,
TopP: request.TopP,
MaxOutputTokens: request.MaxTokens,
},
}
functions := request.GetFunctions()
if functions != nil {
var geminiChatTools GeminiChatTools
for _, function := range functions {
geminiChatTools.FunctionDeclarations = append(geminiChatTools.FunctionDeclarations, *function)
}
geminiRequest.Tools = append(geminiRequest.Tools, geminiChatTools)
}
geminiContent, err := OpenAIToGeminiChatContent(request.Messages)
if err != nil {
return nil, err
}
geminiRequest.Contents = geminiContent
return &geminiRequest, nil
}
func (p *GeminiProvider) convertToChatOpenai(response *GeminiChatResponse, request *types.ChatCompletionRequest) (openaiResponse *types.ChatCompletionResponse, errWithCode *types.OpenAIErrorWithStatusCode) {
error := errorHandle(&response.GeminiErrorResponse)
if error != nil {
errWithCode = &types.OpenAIErrorWithStatusCode{
OpenAIError: *error,
StatusCode: http.StatusBadRequest,
}
return
}
openaiResponse = &types.ChatCompletionResponse{
ID: fmt.Sprintf("chatcmpl-%s", utils.GetUUID()),
Object: "chat.completion",
Created: utils.GetTimestamp(),
Model: request.Model,
Choices: make([]types.ChatCompletionChoice, 0, len(response.Candidates)),
}
for _, candidate := range response.Candidates {
openaiResponse.Choices = append(openaiResponse.Choices, candidate.ToOpenAIChoice(request))
}
*p.Usage = convertOpenAIUsage(request.Model, response.UsageMetadata)
openaiResponse.Usage = p.Usage
return
}
// 转换为OpenAI聊天流式请求体
func (h *geminiStreamHandler) handlerStream(rawLine *[]byte, dataChan chan string, errChan chan error) {
// 如果rawLine 前缀不为data:,则直接返回
if !strings.HasPrefix(string(*rawLine), "data: ") {
*rawLine = nil
return
}
// 去除前缀
*rawLine = (*rawLine)[6:]
var geminiResponse GeminiChatResponse
err := json.Unmarshal(*rawLine, &geminiResponse)
if err != nil {
errChan <- common.ErrorToOpenAIError(err)
return
}
error := errorHandle(&geminiResponse.GeminiErrorResponse)
if error != nil {
errChan <- error
return
}
h.convertToOpenaiStream(&geminiResponse, dataChan)
}
func (h *geminiStreamHandler) convertToOpenaiStream(geminiResponse *GeminiChatResponse, dataChan chan string) {
streamResponse := types.ChatCompletionStreamResponse{
ID: fmt.Sprintf("chatcmpl-%s", utils.GetUUID()),
Object: "chat.completion.chunk",
Created: utils.GetTimestamp(),
Model: h.Request.Model,
// Choices: choices,
}
choices := make([]types.ChatCompletionStreamChoice, 0, len(geminiResponse.Candidates))
for _, candidate := range geminiResponse.Candidates {
choices = append(choices, candidate.ToOpenAIStreamChoice(h.Request))
}
if len(choices) > 0 && (choices[0].Delta.ToolCalls != nil || choices[0].Delta.FunctionCall != nil) {
choices := choices[0].ConvertOpenaiStream()
for _, choice := range choices {
chatCompletionCopy := streamResponse
chatCompletionCopy.Choices = []types.ChatCompletionStreamChoice{choice}
responseBody, _ := json.Marshal(chatCompletionCopy)
dataChan <- string(responseBody)
}
} else {
streamResponse.Choices = choices
responseBody, _ := json.Marshal(streamResponse)
dataChan <- string(responseBody)
}
if geminiResponse.UsageMetadata != nil {
*h.Usage = convertOpenAIUsage(h.Request.Model, geminiResponse.UsageMetadata)
}
}
const tokenThreshold = 1000000
var modelAdjustRatios = map[string]int{
"gemini-1.5-pro": 2,
"gemini-1.5-flash": 2,
}
func adjustTokenCounts(modelName string, usage *GeminiUsageMetadata) {
if usage.PromptTokenCount <= tokenThreshold && usage.CandidatesTokenCount <= tokenThreshold {
return
}
currentRatio := 1
for model, r := range modelAdjustRatios {
if strings.HasPrefix(modelName, model) {
currentRatio = r
break
}
}
if currentRatio == 1 {
return
}
adjustTokenCount := func(count int) int {
if count > tokenThreshold {
return tokenThreshold + (count-tokenThreshold)*currentRatio
}
return count
}
if usage.PromptTokenCount > tokenThreshold {
usage.PromptTokenCount = adjustTokenCount(usage.PromptTokenCount)
}
if usage.CandidatesTokenCount > tokenThreshold {
usage.CandidatesTokenCount = adjustTokenCount(usage.CandidatesTokenCount)
}
usage.TotalTokenCount = usage.PromptTokenCount + usage.CandidatesTokenCount
}
func convertOpenAIUsage(modelName string, geminiUsage *GeminiUsageMetadata) types.Usage {
adjustTokenCounts(modelName, geminiUsage)
return types.Usage{
PromptTokens: geminiUsage.PromptTokenCount,
CompletionTokens: geminiUsage.CandidatesTokenCount,
TotalTokens: geminiUsage.TotalTokenCount,
}
}