Compare commits

...

12 Commits

Author SHA1 Message Date
JustSong
cf16f44970 feat: load channel models from server 2024-03-09 02:28:23 +08:00
JustSong
bf2e26a48f feat: support claude-3 (close #1080, close #1094) 2024-03-09 01:12:47 +08:00
momomobinx
4fb22ad4ce feat: support third part models of baidu (#1046)
百度千帆平台上的第三方大模型调用
2024-03-03 23:50:28 +08:00
JustSong
95cfb8e8c9 fix: using the first available model if default model is not found (close #1021) 2024-03-03 22:58:41 +08:00
JustSong
c6ace985c2 fix: set missing ali parameters (close #1028) 2024-03-03 22:51:01 +08:00
JustSong
10a926b8f3 feat: only use the top priority when first retry (#1048) 2024-03-03 22:16:34 +08:00
JustSong
2df877a352 feat: switch priority when retry (close #1048) 2024-03-03 22:14:07 +08:00
JustSong
9d8967f7d3 feat: support Mistral's models now (close #1051) 2024-03-03 21:46:45 +08:00
JustSong
b35f3523d3 feat: add gemini model alias (close #1064) 2024-03-03 21:03:04 +08:00
JustSong
82e916b5ff fix: fix azure test (close #1069) 2024-03-03 20:51:28 +08:00
JustSong
de18d6fe16 refactor: refactor image relay (close #1068) 2024-03-03 19:30:11 +08:00
JustSong
1d0b7fb5ae feat: support chatglm-4 (close #1045, close #952, close #952, close #943) 2024-03-02 03:05:25 +08:00
34 changed files with 580 additions and 308 deletions

View File

@@ -67,6 +67,7 @@ _✨ 通过标准的 OpenAI API 格式访问所有的大模型,开箱即用
+ [x] [OpenAI ChatGPT 系列模型](https://platform.openai.com/docs/guides/gpt/chat-completions-api)(支持 [Azure OpenAI API](https://learn.microsoft.com/en-us/azure/ai-services/openai/reference)
+ [x] [Anthropic Claude 系列模型](https://anthropic.com)
+ [x] [Google PaLM2/Gemini 系列模型](https://developers.generativeai.google)
+ [x] [Mistral 系列模型](https://mistral.ai/)
+ [x] [百度文心一言系列模型](https://cloud.baidu.com/doc/WENXINWORKSHOP/index.html)
+ [x] [阿里通义千问系列模型](https://help.aliyun.com/document_detail/2400395.html)
+ [x] [讯飞星火认知大模型](https://www.xfyun.cn/doc/spark/Web.html)

View File

@@ -38,34 +38,37 @@ const (
)
const (
ChannelTypeUnknown = 0
ChannelTypeOpenAI = 1
ChannelTypeAPI2D = 2
ChannelTypeAzure = 3
ChannelTypeCloseAI = 4
ChannelTypeOpenAISB = 5
ChannelTypeOpenAIMax = 6
ChannelTypeOhMyGPT = 7
ChannelTypeCustom = 8
ChannelTypeAILS = 9
ChannelTypeAIProxy = 10
ChannelTypePaLM = 11
ChannelTypeAPI2GPT = 12
ChannelTypeAIGC2D = 13
ChannelTypeAnthropic = 14
ChannelTypeBaidu = 15
ChannelTypeZhipu = 16
ChannelTypeAli = 17
ChannelTypeXunfei = 18
ChannelType360 = 19
ChannelTypeOpenRouter = 20
ChannelTypeAIProxyLibrary = 21
ChannelTypeFastGPT = 22
ChannelTypeTencent = 23
ChannelTypeGemini = 24
ChannelTypeMoonshot = 25
ChannelTypeBaichuan = 26
ChannelTypeMinimax = 27
ChannelTypeUnknown = iota
ChannelTypeOpenAI
ChannelTypeAPI2D
ChannelTypeAzure
ChannelTypeCloseAI
ChannelTypeOpenAISB
ChannelTypeOpenAIMax
ChannelTypeOhMyGPT
ChannelTypeCustom
ChannelTypeAILS
ChannelTypeAIProxy
ChannelTypePaLM
ChannelTypeAPI2GPT
ChannelTypeAIGC2D
ChannelTypeAnthropic
ChannelTypeBaidu
ChannelTypeZhipu
ChannelTypeAli
ChannelTypeXunfei
ChannelType360
ChannelTypeOpenRouter
ChannelTypeAIProxyLibrary
ChannelTypeFastGPT
ChannelTypeTencent
ChannelTypeGemini
ChannelTypeMoonshot
ChannelTypeBaichuan
ChannelTypeMinimax
ChannelTypeMistral
ChannelTypeDummy
)
var ChannelBaseURLs = []string{
@@ -97,6 +100,7 @@ var ChannelBaseURLs = []string{
"https://api.moonshot.cn", // 25
"https://api.baichuan-ai.com", // 26
"https://api.minimax.chat", // 27
"https://api.mistral.ai", // 28
}
const (

View File

@@ -7,29 +7,6 @@ import (
"time"
)
var DalleSizeRatios = map[string]map[string]float64{
"dall-e-2": {
"256x256": 1,
"512x512": 1.125,
"1024x1024": 1.25,
},
"dall-e-3": {
"1024x1024": 1,
"1024x1792": 2,
"1792x1024": 2,
},
}
var DalleGenerationImageAmounts = map[string][2]int{
"dall-e-2": {1, 10},
"dall-e-3": {1, 1}, // OpenAI allows n=1 currently.
}
var DalleImagePromptLengthLimitations = map[string]int{
"dall-e-2": 1000,
"dall-e-3": 4000,
}
const (
USD2RMB = 7
USD = 500 // $0.002 = 1 -> $1 = 500
@@ -40,7 +17,6 @@ const (
// https://platform.openai.com/docs/models/model-endpoint-compatibility
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Blfmc9dlf
// https://openai.com/pricing
// TODO: when a new api is enabled, check the pricing here
// 1 === $0.002 / 1K tokens
// 1 === ¥0.014 / 1k tokens
var ModelRatio = map[string]float64{
@@ -87,21 +63,28 @@ var ModelRatio = map[string]float64{
"text-search-ada-doc-001": 10,
"text-moderation-stable": 0.1,
"text-moderation-latest": 0.1,
"dall-e-2": 8, // $0.016 - $0.020 / image
"dall-e-3": 20, // $0.040 - $0.120 / image
"claude-instant-1": 0.815, // $1.63 / 1M tokens
"claude-2": 5.51, // $11.02 / 1M tokens
"claude-2.0": 5.51, // $11.02 / 1M tokens
"claude-2.1": 5.51, // $11.02 / 1M tokens
"dall-e-2": 8, // $0.016 - $0.020 / image
"dall-e-3": 20, // $0.040 - $0.120 / image
// https://www.anthropic.com/api#pricing
"claude-instant-1.2": 0.8 / 1000 * USD,
"claude-2.0": 8.0 / 1000 * USD,
"claude-2.1": 8.0 / 1000 * USD,
"claude-3-haiku-20240229": 0.25 / 1000 * USD,
"claude-3-sonnet-20240229": 3.0 / 1000 * USD,
"claude-3-opus-20240229": 15.0 / 1000 * USD,
// https://cloud.baidu.com/doc/WENXINWORKSHOP/s/hlrk4akp7
"ERNIE-Bot": 0.8572, // ¥0.012 / 1k tokens
"ERNIE-Bot-turbo": 0.5715, // ¥0.008 / 1k tokens
"ERNIE-Bot-4": 0.12 * RMB, // ¥0.12 / 1k tokens
"ERNIE-Bot-8k": 0.024 * RMB,
"Embedding-V1": 0.1429, // ¥0.002 / 1k tokens
"PaLM-2": 1,
"gemini-pro": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
"gemini-pro-vision": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
"ERNIE-Bot": 0.8572, // ¥0.012 / 1k tokens
"ERNIE-Bot-turbo": 0.5715, // ¥0.008 / 1k tokens
"ERNIE-Bot-4": 0.12 * RMB, // ¥0.12 / 1k tokens
"ERNIE-Bot-8k": 0.024 * RMB,
"Embedding-V1": 0.1429, // ¥0.002 / 1k tokens
"PaLM-2": 1,
"gemini-pro": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
"gemini-pro-vision": 1, // $0.00025 / 1k characters -> $0.001 / 1k tokens
// https://open.bigmodel.cn/pricing
"glm-4": 0.1 * RMB,
"glm-4v": 0.1 * RMB,
"glm-3-turbo": 0.005 * RMB,
"chatglm_turbo": 0.3572, // ¥0.005 / 1k tokens
"chatglm_pro": 0.7143, // ¥0.01 / 1k tokens
"chatglm_std": 0.3572, // ¥0.005 / 1k tokens
@@ -135,15 +118,29 @@ var ModelRatio = map[string]float64{
"abab6-chat": 0.1 * RMB,
"abab5.5-chat": 0.015 * RMB,
"abab5.5s-chat": 0.005 * RMB,
// https://docs.mistral.ai/platform/pricing/
"open-mistral-7b": 0.25 / 1000 * USD,
"open-mixtral-8x7b": 0.7 / 1000 * USD,
"mistral-small-latest": 2.0 / 1000 * USD,
"mistral-medium-latest": 2.7 / 1000 * USD,
"mistral-large-latest": 8.0 / 1000 * USD,
"mistral-embed": 0.1 / 1000 * USD,
}
var CompletionRatio = map[string]float64{}
var DefaultModelRatio map[string]float64
var DefaultCompletionRatio map[string]float64
func init() {
DefaultModelRatio = make(map[string]float64)
for k, v := range ModelRatio {
DefaultModelRatio[k] = v
}
DefaultCompletionRatio = make(map[string]float64)
for k, v := range CompletionRatio {
DefaultCompletionRatio[k] = v
}
}
func ModelRatio2JSONString() string {
@@ -174,8 +171,6 @@ func GetModelRatio(name string) float64 {
return ratio
}
var CompletionRatio = map[string]float64{}
func CompletionRatio2JSONString() string {
jsonBytes, err := json.Marshal(CompletionRatio)
if err != nil {
@@ -193,6 +188,9 @@ func GetCompletionRatio(name string) float64 {
if ratio, ok := CompletionRatio[name]; ok {
return ratio
}
if ratio, ok := DefaultCompletionRatio[name]; ok {
return ratio
}
if strings.HasPrefix(name, "gpt-3.5") {
if strings.HasSuffix(name, "0125") {
// https://openai.com/blog/new-embedding-models-and-api-updates
@@ -219,11 +217,14 @@ func GetCompletionRatio(name string) float64 {
}
return 2
}
if strings.HasPrefix(name, "claude-instant-1") {
return 3.38
if strings.HasPrefix(name, "claude-3") {
return 5
}
if strings.HasPrefix(name, "claude-2") {
return 2.965517
if strings.HasPrefix(name, "claude-") {
return 3
}
if strings.HasPrefix(name, "mistral-") {
return 3
}
return 1
}

8
common/random.go Normal file
View File

@@ -0,0 +1,8 @@
package common
import "math/rand"
// RandRange returns a random number between min and max (max is not included)
func RandRange(min, max int) int {
return min + rand.Intn(max-min)
}

View File

@@ -8,6 +8,7 @@ import (
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/config"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/middleware"
"github.com/songquanpeng/one-api/model"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/helper"
@@ -18,6 +19,7 @@ import (
"net/http/httptest"
"net/url"
"strconv"
"strings"
"sync"
"time"
@@ -51,6 +53,7 @@ func testChannel(channel *model.Channel) (err error, openaiErr *relaymodel.Error
c.Request.Header.Set("Content-Type", "application/json")
c.Set("channel", channel.Type)
c.Set("base_url", channel.GetBaseURL())
middleware.SetupContextForSelectedChannel(c, channel, "")
meta := util.GetRelayMeta(c)
apiType := constant.ChannelType2APIType(channel.Type)
adaptor := helper.GetAdaptor(apiType)
@@ -59,6 +62,12 @@ func testChannel(channel *model.Channel) (err error, openaiErr *relaymodel.Error
}
adaptor.Init(meta)
modelName := adaptor.GetModelList()[0]
if !strings.Contains(channel.Models, modelName) {
modelNames := strings.Split(channel.Models, ",")
if len(modelNames) > 0 {
modelName = modelNames[0]
}
}
request := buildTestRequest()
request.Model = modelName
meta.OriginModelName, meta.ActualModelName = modelName, modelName

View File

@@ -3,13 +3,17 @@ package controller
import (
"fmt"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/relay/channel/ai360"
"github.com/songquanpeng/one-api/relay/channel/baichuan"
"github.com/songquanpeng/one-api/relay/channel/minimax"
"github.com/songquanpeng/one-api/relay/channel/mistral"
"github.com/songquanpeng/one-api/relay/channel/moonshot"
"github.com/songquanpeng/one-api/relay/constant"
"github.com/songquanpeng/one-api/relay/helper"
relaymodel "github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/util"
"net/http"
)
// https://platform.openai.com/docs/api-reference/models/list
@@ -41,6 +45,7 @@ type OpenAIModels struct {
var openAIModels []OpenAIModels
var openAIModelsMap map[string]OpenAIModels
var channelId2Models map[int][]string
func init() {
var permission []OpenAIModelPermission
@@ -122,10 +127,38 @@ func init() {
Parent: nil,
})
}
for _, modelName := range mistral.ModelList {
openAIModels = append(openAIModels, OpenAIModels{
Id: modelName,
Object: "model",
Created: 1626777600,
OwnedBy: "mistralai",
Permission: permission,
Root: modelName,
Parent: nil,
})
}
openAIModelsMap = make(map[string]OpenAIModels)
for _, model := range openAIModels {
openAIModelsMap[model.Id] = model
}
channelId2Models = make(map[int][]string)
for i := 1; i < common.ChannelTypeDummy; i++ {
adaptor := helper.GetAdaptor(constant.ChannelType2APIType(i))
meta := &util.RelayMeta{
ChannelType: i,
}
adaptor.Init(meta)
channelId2Models[i] = adaptor.GetModelList()
}
}
func DashboardListModels(c *gin.Context) {
c.JSON(http.StatusOK, gin.H{
"success": true,
"message": "",
"data": channelId2Models,
})
}
func ListModels(c *gin.Context) {

View File

@@ -62,7 +62,7 @@ func Relay(c *gin.Context) {
retryTimes = 0
}
for i := retryTimes; i > 0; i-- {
channel, err := dbmodel.CacheGetRandomSatisfiedChannel(group, originalModel)
channel, err := dbmodel.CacheGetRandomSatisfiedChannel(group, originalModel, i != retryTimes)
if err != nil {
logger.Errorf(ctx, "CacheGetRandomSatisfiedChannel failed: %w", err)
break

View File

@@ -68,7 +68,7 @@ func Distribute() func(c *gin.Context) {
}
}
requestModel = modelRequest.Model
channel, err = model.CacheGetRandomSatisfiedChannel(userGroup, modelRequest.Model)
channel, err = model.CacheGetRandomSatisfiedChannel(userGroup, modelRequest.Model, false)
if err != nil {
message := fmt.Sprintf("当前分组 %s 下对于模型 %s 无可用渠道", userGroup, modelRequest.Model)
if channel != nil {

View File

@@ -191,7 +191,7 @@ func SyncChannelCache(frequency int) {
}
}
func CacheGetRandomSatisfiedChannel(group string, model string) (*Channel, error) {
func CacheGetRandomSatisfiedChannel(group string, model string, ignoreFirstPriority bool) (*Channel, error) {
if !config.MemoryCacheEnabled {
return GetRandomSatisfiedChannel(group, model)
}
@@ -213,5 +213,10 @@ func CacheGetRandomSatisfiedChannel(group string, model string) (*Channel, error
}
}
idx := rand.Intn(endIdx)
if ignoreFirstPriority {
if endIdx < len(channels) { // which means there are more than one priority
idx = common.RandRange(endIdx, len(channels))
}
}
return channels[idx], nil
}

View File

@@ -33,6 +33,9 @@ func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
enableSearch = true
aliModel = strings.TrimSuffix(aliModel, EnableSearchModelSuffix)
}
if request.TopP >= 1 {
request.TopP = 0.9999
}
return &ChatRequest{
Model: aliModel,
Input: Input{
@@ -42,6 +45,9 @@ func ConvertRequest(request model.GeneralOpenAIRequest) *ChatRequest {
EnableSearch: enableSearch,
IncrementalOutput: request.Stream,
Seed: uint64(request.Seed),
MaxTokens: request.MaxTokens,
Temperature: request.Temperature,
TopP: request.TopP,
},
}
}

View File

@@ -16,6 +16,8 @@ type Parameters struct {
Seed uint64 `json:"seed,omitempty"`
EnableSearch bool `json:"enable_search,omitempty"`
IncrementalOutput bool `json:"incremental_output,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
}
type ChatRequest struct {

View File

@@ -5,7 +5,6 @@ import (
"fmt"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/channel"
"github.com/songquanpeng/one-api/relay/channel/openai"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/util"
"io"
@@ -20,7 +19,7 @@ func (a *Adaptor) Init(meta *util.RelayMeta) {
}
func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
return fmt.Sprintf("%s/v1/complete", meta.BaseURL), nil
return fmt.Sprintf("%s/v1/messages", meta.BaseURL), nil
}
func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *util.RelayMeta) error {
@@ -31,6 +30,7 @@ func (a *Adaptor) SetupRequestHeader(c *gin.Context, req *http.Request, meta *ut
anthropicVersion = "2023-06-01"
}
req.Header.Set("anthropic-version", anthropicVersion)
req.Header.Set("anthropic-beta", "messages-2023-12-15")
return nil
}
@@ -47,9 +47,7 @@ func (a *Adaptor) DoRequest(c *gin.Context, meta *util.RelayMeta, requestBody io
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
var responseText string
err, responseText = StreamHandler(c, resp)
usage = openai.ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
err, usage = StreamHandler(c, resp)
} else {
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}

View File

@@ -1,5 +1,8 @@
package anthropic
var ModelList = []string{
"claude-instant-1", "claude-2", "claude-2.0", "claude-2.1",
"claude-instant-1.2", "claude-2.0", "claude-2.1",
"claude-3-haiku-20240229",
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
}

View File

@@ -7,6 +7,7 @@ import (
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/common"
"github.com/songquanpeng/one-api/common/helper"
"github.com/songquanpeng/one-api/common/image"
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/relay/channel/openai"
"github.com/songquanpeng/one-api/relay/model"
@@ -15,73 +16,135 @@ import (
"strings"
)
func stopReasonClaude2OpenAI(reason string) string {
switch reason {
func stopReasonClaude2OpenAI(reason *string) string {
if reason == nil {
return ""
}
switch *reason {
case "end_turn":
return "stop"
case "stop_sequence":
return "stop"
case "max_tokens":
return "length"
default:
return reason
return *reason
}
}
func ConvertRequest(textRequest model.GeneralOpenAIRequest) *Request {
claudeRequest := Request{
Model: textRequest.Model,
Prompt: "",
MaxTokensToSample: textRequest.MaxTokens,
StopSequences: nil,
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
Stream: textRequest.Stream,
Model: textRequest.Model,
MaxTokens: textRequest.MaxTokens,
Temperature: textRequest.Temperature,
TopP: textRequest.TopP,
Stream: textRequest.Stream,
}
if claudeRequest.MaxTokensToSample == 0 {
claudeRequest.MaxTokensToSample = 1000000
if claudeRequest.MaxTokens == 0 {
claudeRequest.MaxTokens = 4096
}
// legacy model name mapping
if claudeRequest.Model == "claude-instant-1" {
claudeRequest.Model = "claude-instant-1.1"
} else if claudeRequest.Model == "claude-2" {
claudeRequest.Model = "claude-2.1"
}
prompt := ""
for _, message := range textRequest.Messages {
if message.Role == "user" {
prompt += fmt.Sprintf("\n\nHuman: %s", message.Content)
} else if message.Role == "assistant" {
prompt += fmt.Sprintf("\n\nAssistant: %s", message.Content)
} else if message.Role == "system" {
if prompt == "" {
prompt = message.StringContent()
}
if message.Role == "system" && claudeRequest.System == "" {
claudeRequest.System = message.StringContent()
continue
}
claudeMessage := Message{
Role: message.Role,
}
var content Content
if message.IsStringContent() {
content.Type = "text"
content.Text = message.StringContent()
claudeMessage.Content = append(claudeMessage.Content, content)
claudeRequest.Messages = append(claudeRequest.Messages, claudeMessage)
continue
}
var contents []Content
openaiContent := message.ParseContent()
for _, part := range openaiContent {
var content Content
if part.Type == model.ContentTypeText {
content.Type = "text"
content.Text = part.Text
} else if part.Type == model.ContentTypeImageURL {
content.Type = "image"
content.Source = &ImageSource{
Type: "base64",
}
mimeType, data, _ := image.GetImageFromUrl(part.ImageURL.Url)
content.Source.MediaType = mimeType
content.Source.Data = data
}
contents = append(contents, content)
}
claudeMessage.Content = contents
claudeRequest.Messages = append(claudeRequest.Messages, claudeMessage)
}
prompt += "\n\nAssistant:"
claudeRequest.Prompt = prompt
return &claudeRequest
}
func streamResponseClaude2OpenAI(claudeResponse *Response) *openai.ChatCompletionsStreamResponse {
// https://docs.anthropic.com/claude/reference/messages-streaming
func streamResponseClaude2OpenAI(claudeResponse *StreamResponse) (*openai.ChatCompletionsStreamResponse, *Response) {
var response *Response
var responseText string
var stopReason string
switch claudeResponse.Type {
case "message_start":
return nil, claudeResponse.Message
case "content_block_start":
if claudeResponse.ContentBlock != nil {
responseText = claudeResponse.ContentBlock.Text
}
case "content_block_delta":
if claudeResponse.Delta != nil {
responseText = claudeResponse.Delta.Text
}
case "message_delta":
if claudeResponse.Usage != nil {
response = &Response{
Usage: *claudeResponse.Usage,
}
}
if claudeResponse.Delta != nil && claudeResponse.Delta.StopReason != nil {
stopReason = *claudeResponse.Delta.StopReason
}
}
var choice openai.ChatCompletionsStreamResponseChoice
choice.Delta.Content = claudeResponse.Completion
finishReason := stopReasonClaude2OpenAI(claudeResponse.StopReason)
choice.Delta.Content = responseText
choice.Delta.Role = "assistant"
finishReason := stopReasonClaude2OpenAI(&stopReason)
if finishReason != "null" {
choice.FinishReason = &finishReason
}
var response openai.ChatCompletionsStreamResponse
response.Object = "chat.completion.chunk"
response.Model = claudeResponse.Model
response.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &response
var openaiResponse openai.ChatCompletionsStreamResponse
openaiResponse.Object = "chat.completion.chunk"
openaiResponse.Choices = []openai.ChatCompletionsStreamResponseChoice{choice}
return &openaiResponse, response
}
func responseClaude2OpenAI(claudeResponse *Response) *openai.TextResponse {
var responseText string
if len(claudeResponse.Content) > 0 {
responseText = claudeResponse.Content[0].Text
}
choice := openai.TextResponseChoice{
Index: 0,
Message: model.Message{
Role: "assistant",
Content: strings.TrimPrefix(claudeResponse.Completion, " "),
Content: responseText,
Name: nil,
},
FinishReason: stopReasonClaude2OpenAI(claudeResponse.StopReason),
}
fullTextResponse := openai.TextResponse{
Id: fmt.Sprintf("chatcmpl-%s", helper.GetUUID()),
Id: fmt.Sprintf("chatcmpl-%s", claudeResponse.Id),
Model: claudeResponse.Model,
Object: "chat.completion",
Created: helper.GetTimestamp(),
Choices: []openai.TextResponseChoice{choice},
@@ -89,17 +152,15 @@ func responseClaude2OpenAI(claudeResponse *Response) *openai.TextResponse {
return &fullTextResponse
}
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, string) {
responseText := ""
responseId := fmt.Sprintf("chatcmpl-%s", helper.GetUUID())
func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusCode, *model.Usage) {
createdTime := helper.GetTimestamp()
scanner := bufio.NewScanner(resp.Body)
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
if atEOF && len(data) == 0 {
return 0, nil, nil
}
if i := strings.Index(string(data), "\r\n\r\n"); i >= 0 {
return i + 4, data[0:i], nil
if i := strings.Index(string(data), "\n"); i >= 0 {
return i + 1, data[0:i], nil
}
if atEOF {
return len(data), data, nil
@@ -111,29 +172,45 @@ func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusC
go func() {
for scanner.Scan() {
data := scanner.Text()
if !strings.HasPrefix(data, "event: completion") {
if len(data) < 6 {
continue
}
data = strings.TrimPrefix(data, "event: completion\r\ndata: ")
if !strings.HasPrefix(data, "data: ") {
continue
}
data = strings.TrimPrefix(data, "data: ")
dataChan <- data
}
stopChan <- true
}()
common.SetEventStreamHeaders(c)
var usage model.Usage
var modelName string
var id string
c.Stream(func(w io.Writer) bool {
select {
case data := <-dataChan:
// some implementations may add \r at the end of data
data = strings.TrimSuffix(data, "\r")
var claudeResponse Response
var claudeResponse StreamResponse
err := json.Unmarshal([]byte(data), &claudeResponse)
if err != nil {
logger.SysError("error unmarshalling stream response: " + err.Error())
return true
}
responseText += claudeResponse.Completion
response := streamResponseClaude2OpenAI(&claudeResponse)
response.Id = responseId
response, meta := streamResponseClaude2OpenAI(&claudeResponse)
if meta != nil {
usage.PromptTokens += meta.Usage.InputTokens
usage.CompletionTokens += meta.Usage.OutputTokens
modelName = meta.Model
id = fmt.Sprintf("chatcmpl-%s", meta.Id)
return true
}
if response == nil {
return true
}
response.Id = id
response.Model = modelName
response.Created = createdTime
jsonStr, err := json.Marshal(response)
if err != nil {
@@ -147,11 +224,8 @@ func StreamHandler(c *gin.Context, resp *http.Response) (*model.ErrorWithStatusC
return false
}
})
err := resp.Body.Close()
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
}
return nil, responseText
_ = resp.Body.Close()
return nil, &usage
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {
@@ -181,11 +255,10 @@ func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName st
}
fullTextResponse := responseClaude2OpenAI(&claudeResponse)
fullTextResponse.Model = modelName
completionTokens := openai.CountTokenText(claudeResponse.Completion, modelName)
usage := model.Usage{
PromptTokens: promptTokens,
CompletionTokens: completionTokens,
TotalTokens: promptTokens + completionTokens,
PromptTokens: claudeResponse.Usage.InputTokens,
CompletionTokens: claudeResponse.Usage.OutputTokens,
TotalTokens: claudeResponse.Usage.InputTokens + claudeResponse.Usage.OutputTokens,
}
fullTextResponse.Usage = usage
jsonResponse, err := json.Marshal(fullTextResponse)

View File

@@ -1,19 +1,44 @@
package anthropic
// https://docs.anthropic.com/claude/reference/messages_post
type Metadata struct {
UserId string `json:"user_id"`
}
type ImageSource struct {
Type string `json:"type"`
MediaType string `json:"media_type"`
Data string `json:"data"`
}
type Content struct {
Type string `json:"type"`
Text string `json:"text,omitempty"`
Source *ImageSource `json:"source,omitempty"`
}
type Message struct {
Role string `json:"role"`
Content []Content `json:"content"`
}
type Request struct {
Model string `json:"model"`
Prompt string `json:"prompt"`
MaxTokensToSample int `json:"max_tokens_to_sample"`
StopSequences []string `json:"stop_sequences,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
TopP float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
Model string `json:"model"`
Messages []Message `json:"messages"`
System string `json:"system,omitempty"`
MaxTokens int `json:"max_tokens,omitempty"`
StopSequences []string `json:"stop_sequences,omitempty"`
Stream bool `json:"stream,omitempty"`
Temperature float64 `json:"temperature,omitempty"`
TopP float64 `json:"top_p,omitempty"`
TopK int `json:"top_k,omitempty"`
//Metadata `json:"metadata,omitempty"`
Stream bool `json:"stream,omitempty"`
}
type Usage struct {
InputTokens int `json:"input_tokens"`
OutputTokens int `json:"output_tokens"`
}
type Error struct {
@@ -22,8 +47,29 @@ type Error struct {
}
type Response struct {
Completion string `json:"completion"`
StopReason string `json:"stop_reason"`
Model string `json:"model"`
Error Error `json:"error"`
Id string `json:"id"`
Type string `json:"type"`
Role string `json:"role"`
Content []Content `json:"content"`
Model string `json:"model"`
StopReason *string `json:"stop_reason"`
StopSequence *string `json:"stop_sequence"`
Usage Usage `json:"usage"`
Error Error `json:"error"`
}
type Delta struct {
Type string `json:"type"`
Text string `json:"text"`
StopReason *string `json:"stop_reason"`
StopSequence *string `json:"stop_sequence"`
}
type StreamResponse struct {
Type string `json:"type"`
Message *Response `json:"message"`
Index int `json:"index"`
ContentBlock *Content `json:"content_block"`
Delta *Delta `json:"delta"`
Usage *Usage `json:"usage"`
}

View File

@@ -36,6 +36,8 @@ func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1"
case "Embedding-V1":
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/embedding-v1"
default:
fullRequestURL = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/" + meta.ActualModelName
}
var accessToken string
var err error

View File

@@ -1,6 +1,6 @@
package gemini
var ModelList = []string{
"gemini-pro",
"gemini-pro-vision",
"gemini-pro", "gemini-1.0-pro-001",
"gemini-pro-vision", "gemini-1.0-pro-vision-001",
}

View File

@@ -0,0 +1,10 @@
package mistral
var ModelList = []string{
"open-mistral-7b",
"open-mixtral-8x7b",
"mistral-small-latest",
"mistral-medium-latest",
"mistral-large-latest",
"mistral-embed",
}

View File

@@ -9,6 +9,7 @@ import (
"github.com/songquanpeng/one-api/relay/channel/ai360"
"github.com/songquanpeng/one-api/relay/channel/baichuan"
"github.com/songquanpeng/one-api/relay/channel/minimax"
"github.com/songquanpeng/one-api/relay/channel/mistral"
"github.com/songquanpeng/one-api/relay/channel/moonshot"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/util"
@@ -76,7 +77,7 @@ func (a *Adaptor) DoRequest(c *gin.Context, meta *util.RelayMeta, requestBody io
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
var responseText string
err, responseText = StreamHandler(c, resp, meta.Mode)
err, responseText, _ = StreamHandler(c, resp, meta.Mode)
usage = ResponseText2Usage(responseText, meta.ActualModelName, meta.PromptTokens)
} else {
err, usage = Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
@@ -94,6 +95,8 @@ func (a *Adaptor) GetModelList() []string {
return baichuan.ModelList
case common.ChannelTypeMinimax:
return minimax.ModelList
case common.ChannelTypeMistral:
return mistral.ModelList
default:
return ModelList
}
@@ -111,6 +114,8 @@ func (a *Adaptor) GetChannelName() string {
return "baichuan"
case common.ChannelTypeMinimax:
return "minimax"
case common.ChannelTypeMistral:
return "mistralai"
default:
return "openai"
}

View File

@@ -14,7 +14,7 @@ import (
"strings"
)
func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.ErrorWithStatusCode, string) {
func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.ErrorWithStatusCode, string, *model.Usage) {
responseText := ""
scanner := bufio.NewScanner(resp.Body)
scanner.Split(func(data []byte, atEOF bool) (advance int, token []byte, err error) {
@@ -31,6 +31,7 @@ func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.E
})
dataChan := make(chan string)
stopChan := make(chan bool)
var usage *model.Usage
go func() {
for scanner.Scan() {
data := scanner.Text()
@@ -54,6 +55,9 @@ func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.E
for _, choice := range streamResponse.Choices {
responseText += choice.Delta.Content
}
if streamResponse.Usage != nil {
usage = streamResponse.Usage
}
case constant.RelayModeCompletions:
var streamResponse CompletionsStreamResponse
err := json.Unmarshal([]byte(data), &streamResponse)
@@ -86,9 +90,9 @@ func StreamHandler(c *gin.Context, resp *http.Response, relayMode int) (*model.E
})
err := resp.Body.Close()
if err != nil {
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), ""
return ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError), "", nil
}
return nil, responseText
return nil, responseText, usage
}
func Handler(c *gin.Context, resp *http.Response, promptTokens int, modelName string) (*model.ErrorWithStatusCode, *model.Usage) {

View File

@@ -132,6 +132,7 @@ type ChatCompletionsStreamResponse struct {
Created int64 `json:"created"`
Model string `json:"model"`
Choices []ChatCompletionsStreamResponseChoice `json:"choices"`
Usage *model.Usage `json:"usage"`
}
type CompletionsStreamResponse struct {

View File

@@ -81,6 +81,7 @@ func responseTencent2OpenAI(response *ChatResponse) *openai.TextResponse {
func streamResponseTencent2OpenAI(TencentResponse *ChatResponse) *openai.ChatCompletionsStreamResponse {
response := openai.ChatCompletionsStreamResponse{
Id: fmt.Sprintf("chatcmpl-%s", helper.GetUUID()),
Object: "chat.completion.chunk",
Created: helper.GetTimestamp(),
Model: "tencent-hunyuan",

View File

@@ -5,20 +5,35 @@ import (
"fmt"
"github.com/gin-gonic/gin"
"github.com/songquanpeng/one-api/relay/channel"
"github.com/songquanpeng/one-api/relay/channel/openai"
"github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/util"
"io"
"net/http"
"strings"
)
type Adaptor struct {
APIVersion string
}
func (a *Adaptor) Init(meta *util.RelayMeta) {
}
func (a *Adaptor) SetVersionByModeName(modelName string) {
if strings.HasPrefix(modelName, "glm-") {
a.APIVersion = "v4"
} else {
a.APIVersion = "v3"
}
}
func (a *Adaptor) GetRequestURL(meta *util.RelayMeta) (string, error) {
a.SetVersionByModeName(meta.ActualModelName)
if a.APIVersion == "v4" {
return fmt.Sprintf("%s/api/paas/v4/chat/completions", meta.BaseURL), nil
}
method := "invoke"
if meta.IsStream {
method = "sse-invoke"
@@ -37,6 +52,13 @@ func (a *Adaptor) ConvertRequest(c *gin.Context, relayMode int, request *model.G
if request == nil {
return nil, errors.New("request is nil")
}
if request.TopP >= 1 {
request.TopP = 0.99
}
a.SetVersionByModeName(request.Model)
if a.APIVersion == "v4" {
return request, nil
}
return ConvertRequest(*request), nil
}
@@ -44,7 +66,19 @@ func (a *Adaptor) DoRequest(c *gin.Context, meta *util.RelayMeta, requestBody io
return channel.DoRequestHelper(a, c, meta, requestBody)
}
func (a *Adaptor) DoResponseV4(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if meta.IsStream {
err, _, usage = openai.StreamHandler(c, resp, meta.Mode)
} else {
err, usage = openai.Handler(c, resp, meta.PromptTokens, meta.ActualModelName)
}
return
}
func (a *Adaptor) DoResponse(c *gin.Context, resp *http.Response, meta *util.RelayMeta) (usage *model.Usage, err *model.ErrorWithStatusCode) {
if a.APIVersion == "v4" {
return a.DoResponseV4(c, resp, meta)
}
if meta.IsStream {
err, usage = StreamHandler(c, resp)
} else {

View File

@@ -2,4 +2,5 @@ package zhipu
var ModelList = []string{
"chatglm_turbo", "chatglm_pro", "chatglm_std", "chatglm_lite",
"glm-4", "glm-4v", "glm-3-turbo",
}

24
relay/constant/image.go Normal file
View File

@@ -0,0 +1,24 @@
package constant
var DalleSizeRatios = map[string]map[string]float64{
"dall-e-2": {
"256x256": 1,
"512x512": 1.125,
"1024x1024": 1.25,
},
"dall-e-3": {
"1024x1024": 1,
"1024x1792": 2,
"1792x1024": 2,
},
}
var DalleGenerationImageAmounts = map[string][2]int{
"dall-e-2": {1, 10},
"dall-e-3": {1, 1}, // OpenAI allows n=1 currently.
}
var DalleImagePromptLengthLimitations = map[string]int{
"dall-e-2": 1000,
"dall-e-3": 4000,
}

View File

@@ -36,6 +36,65 @@ func getAndValidateTextRequest(c *gin.Context, relayMode int) (*relaymodel.Gener
return textRequest, nil
}
func getImageRequest(c *gin.Context, relayMode int) (*openai.ImageRequest, error) {
imageRequest := &openai.ImageRequest{}
err := common.UnmarshalBodyReusable(c, imageRequest)
if err != nil {
return nil, err
}
if imageRequest.N == 0 {
imageRequest.N = 1
}
if imageRequest.Size == "" {
imageRequest.Size = "1024x1024"
}
if imageRequest.Model == "" {
imageRequest.Model = "dall-e-2"
}
return imageRequest, nil
}
func validateImageRequest(imageRequest *openai.ImageRequest, meta *util.RelayMeta) *relaymodel.ErrorWithStatusCode {
// model validation
_, hasValidSize := constant.DalleSizeRatios[imageRequest.Model][imageRequest.Size]
if !hasValidSize {
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
}
// check prompt length
if imageRequest.Prompt == "" {
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
}
if len(imageRequest.Prompt) > constant.DalleImagePromptLengthLimitations[imageRequest.Model] {
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
}
// Number of generated images validation
if !isWithinRange(imageRequest.Model, imageRequest.N) {
// channel not azure
if meta.ChannelType != common.ChannelTypeAzure {
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
}
}
return nil
}
func getImageCostRatio(imageRequest *openai.ImageRequest) (float64, error) {
if imageRequest == nil {
return 0, errors.New("imageRequest is nil")
}
imageCostRatio, hasValidSize := constant.DalleSizeRatios[imageRequest.Model][imageRequest.Size]
if !hasValidSize {
return 0, fmt.Errorf("size not supported for this image model: %s", imageRequest.Size)
}
if imageRequest.Quality == "hd" && imageRequest.Model == "dall-e-3" {
if imageRequest.Size == "1024x1024" {
imageCostRatio *= 2
} else {
imageCostRatio *= 1.5
}
}
return imageCostRatio, nil
}
func getPromptTokens(textRequest *relaymodel.GeneralOpenAIRequest, relayMode int) int {
switch relayMode {
case constant.RelayModeChatCompletions:
@@ -113,10 +172,8 @@ func postConsumeQuota(ctx context.Context, usage *relaymodel.Usage, meta *util.R
if err != nil {
logger.Error(ctx, "error update user quota cache: "+err.Error())
}
if quota != 0 {
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f,补全倍率 %.2f", modelRatio, groupRatio, completionRatio)
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, promptTokens, completionTokens, textRequest.Model, meta.TokenName, quota, logContent)
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
model.UpdateChannelUsedQuota(meta.ChannelId, quota)
}
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f,补全倍率 %.2f", modelRatio, groupRatio, completionRatio)
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, promptTokens, completionTokens, textRequest.Model, meta.TokenName, quota, logContent)
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
model.UpdateChannelUsedQuota(meta.ChannelId, quota)
}

View File

@@ -10,6 +10,7 @@ import (
"github.com/songquanpeng/one-api/common/logger"
"github.com/songquanpeng/one-api/model"
"github.com/songquanpeng/one-api/relay/channel/openai"
"github.com/songquanpeng/one-api/relay/constant"
relaymodel "github.com/songquanpeng/one-api/relay/model"
"github.com/songquanpeng/one-api/relay/util"
"io"
@@ -20,120 +21,65 @@ import (
)
func isWithinRange(element string, value int) bool {
if _, ok := common.DalleGenerationImageAmounts[element]; !ok {
if _, ok := constant.DalleGenerationImageAmounts[element]; !ok {
return false
}
min := common.DalleGenerationImageAmounts[element][0]
max := common.DalleGenerationImageAmounts[element][1]
min := constant.DalleGenerationImageAmounts[element][0]
max := constant.DalleGenerationImageAmounts[element][1]
return value >= min && value <= max
}
func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatusCode {
imageModel := "dall-e-2"
imageSize := "1024x1024"
tokenId := c.GetInt("token_id")
channelType := c.GetInt("channel")
channelId := c.GetInt("channel_id")
userId := c.GetInt("id")
group := c.GetString("group")
var imageRequest openai.ImageRequest
err := common.UnmarshalBodyReusable(c, &imageRequest)
ctx := c.Request.Context()
meta := util.GetRelayMeta(c)
imageRequest, err := getImageRequest(c, meta.Mode)
if err != nil {
return openai.ErrorWrapper(err, "bind_request_body_failed", http.StatusBadRequest)
}
if imageRequest.N == 0 {
imageRequest.N = 1
}
// Size validation
if imageRequest.Size != "" {
imageSize = imageRequest.Size
}
// Model validation
if imageRequest.Model != "" {
imageModel = imageRequest.Model
}
imageCostRatio, hasValidSize := common.DalleSizeRatios[imageModel][imageSize]
// Check if model is supported
if hasValidSize {
if imageRequest.Quality == "hd" && imageModel == "dall-e-3" {
if imageSize == "1024x1024" {
imageCostRatio *= 2
} else {
imageCostRatio *= 1.5
}
}
} else {
return openai.ErrorWrapper(errors.New("size not supported for this image model"), "size_not_supported", http.StatusBadRequest)
}
// Prompt validation
if imageRequest.Prompt == "" {
return openai.ErrorWrapper(errors.New("prompt is required"), "prompt_missing", http.StatusBadRequest)
}
// Check prompt length
if len(imageRequest.Prompt) > common.DalleImagePromptLengthLimitations[imageModel] {
return openai.ErrorWrapper(errors.New("prompt is too long"), "prompt_too_long", http.StatusBadRequest)
}
// Number of generated images validation
if !isWithinRange(imageModel, imageRequest.N) {
// channel not azure
if channelType != common.ChannelTypeAzure {
return openai.ErrorWrapper(errors.New("invalid value of n"), "n_not_within_range", http.StatusBadRequest)
}
logger.Errorf(ctx, "getImageRequest failed: %s", err.Error())
return openai.ErrorWrapper(err, "invalid_image_request", http.StatusBadRequest)
}
// map model name
modelMapping := c.GetString("model_mapping")
isModelMapped := false
if modelMapping != "" {
modelMap := make(map[string]string)
err := json.Unmarshal([]byte(modelMapping), &modelMap)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_model_mapping_failed", http.StatusInternalServerError)
}
if modelMap[imageModel] != "" {
imageModel = modelMap[imageModel]
isModelMapped = true
}
var isModelMapped bool
meta.OriginModelName = imageRequest.Model
imageRequest.Model, isModelMapped = util.GetMappedModelName(imageRequest.Model, meta.ModelMapping)
meta.ActualModelName = imageRequest.Model
// model validation
bizErr := validateImageRequest(imageRequest, meta)
if bizErr != nil {
return bizErr
}
baseURL := common.ChannelBaseURLs[channelType]
imageCostRatio, err := getImageCostRatio(imageRequest)
if err != nil {
return openai.ErrorWrapper(err, "get_image_cost_ratio_failed", http.StatusInternalServerError)
}
requestURL := c.Request.URL.String()
if c.GetString("base_url") != "" {
baseURL = c.GetString("base_url")
}
fullRequestURL := util.GetFullRequestURL(baseURL, requestURL, channelType)
if channelType == common.ChannelTypeAzure {
fullRequestURL := util.GetFullRequestURL(meta.BaseURL, requestURL, meta.ChannelType)
if meta.ChannelType == common.ChannelTypeAzure {
// https://learn.microsoft.com/en-us/azure/ai-services/openai/dall-e-quickstart?tabs=dalle3%2Ccommand-line&pivots=rest-api
apiVersion := util.GetAzureAPIVersion(c)
// https://{resource_name}.openai.azure.com/openai/deployments/dall-e-3/images/generations?api-version=2023-06-01-preview
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", baseURL, imageModel, apiVersion)
fullRequestURL = fmt.Sprintf("%s/openai/deployments/%s/images/generations?api-version=%s", meta.BaseURL, imageRequest.Model, apiVersion)
}
var requestBody io.Reader
if isModelMapped || channelType == common.ChannelTypeAzure { // make Azure channel request body
if isModelMapped || meta.ChannelType == common.ChannelTypeAzure { // make Azure channel request body
jsonStr, err := json.Marshal(imageRequest)
if err != nil {
return openai.ErrorWrapper(err, "marshal_text_request_failed", http.StatusInternalServerError)
return openai.ErrorWrapper(err, "marshal_image_request_failed", http.StatusInternalServerError)
}
requestBody = bytes.NewBuffer(jsonStr)
} else {
requestBody = c.Request.Body
}
modelRatio := common.GetModelRatio(imageModel)
groupRatio := common.GetGroupRatio(group)
modelRatio := common.GetModelRatio(imageRequest.Model)
groupRatio := common.GetGroupRatio(meta.Group)
ratio := modelRatio * groupRatio
userQuota, err := model.CacheGetUserQuota(userId)
userQuota, err := model.CacheGetUserQuota(meta.UserId)
quota := int(ratio*imageCostRatio*1000) * imageRequest.N
@@ -146,7 +92,7 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
return openai.ErrorWrapper(err, "new_request_failed", http.StatusInternalServerError)
}
token := c.Request.Header.Get("Authorization")
if channelType == common.ChannelTypeAzure { // Azure authentication
if meta.ChannelType == common.ChannelTypeAzure { // Azure authentication
token = strings.TrimPrefix(token, "Bearer ")
req.Header.Set("api-key", token)
} else {
@@ -169,25 +115,25 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
if err != nil {
return openai.ErrorWrapper(err, "close_request_body_failed", http.StatusInternalServerError)
}
var textResponse openai.ImageResponse
var imageResponse openai.ImageResponse
defer func(ctx context.Context) {
if resp.StatusCode != http.StatusOK {
return
}
err := model.PostConsumeTokenQuota(tokenId, quota)
err := model.PostConsumeTokenQuota(meta.TokenId, quota)
if err != nil {
logger.SysError("error consuming token remain quota: " + err.Error())
}
err = model.CacheUpdateUserQuota(userId)
err = model.CacheUpdateUserQuota(meta.UserId)
if err != nil {
logger.SysError("error update user quota cache: " + err.Error())
}
if quota != 0 {
tokenName := c.GetString("token_name")
logContent := fmt.Sprintf("模型倍率 %.2f,分组倍率 %.2f", modelRatio, groupRatio)
model.RecordConsumeLog(ctx, userId, channelId, 0, 0, imageModel, tokenName, quota, logContent)
model.UpdateUserUsedQuotaAndRequestCount(userId, quota)
model.RecordConsumeLog(ctx, meta.UserId, meta.ChannelId, 0, 0, imageRequest.Model, tokenName, quota, logContent)
model.UpdateUserUsedQuotaAndRequestCount(meta.UserId, quota)
channelId := c.GetInt("channel_id")
model.UpdateChannelUsedQuota(channelId, quota)
}
@@ -202,7 +148,7 @@ func RelayImageHelper(c *gin.Context, relayMode int) *relaymodel.ErrorWithStatus
if err != nil {
return openai.ErrorWrapper(err, "close_response_body_failed", http.StatusInternalServerError)
}
err = json.Unmarshal(responseBody, &textResponse)
err = json.Unmarshal(responseBody, &imageResponse)
if err != nil {
return openai.ErrorWrapper(err, "unmarshal_response_body_failed", http.StatusInternalServerError)
}

View File

@@ -14,6 +14,7 @@ func SetApiRouter(router *gin.Engine) {
apiRouter.Use(middleware.GlobalAPIRateLimit())
{
apiRouter.GET("/status", controller.GetStatus)
apiRouter.GET("/models", middleware.UserAuth(), controller.DashboardListModels)
apiRouter.GET("/notice", controller.GetNotice)
apiRouter.GET("/about", controller.GetAbout)
apiRouter.GET("/home_page_content", controller.GetHomePageContent)

View File

@@ -29,6 +29,12 @@ export const CHANNEL_OPTIONS = {
value: 24,
color: 'orange'
},
28: {
key: 28,
text: 'Mistral AI',
value: 28,
color: 'orange'
},
15: {
key: 15,
text: '百度文心千帆',

View File

@@ -67,7 +67,7 @@ const typeConfig = {
},
16: {
input: {
models: ["chatglm_turbo", "chatglm_pro", "chatglm_std", "chatglm_lite"],
models: ["glm-4", "glm-4v", "glm-3-turbo", "chatglm_turbo", "chatglm_pro", "chatglm_std", "chatglm_lite"],
},
modelGroup: "zhipu",
},

View File

@@ -1,7 +1,16 @@
import React, { useEffect, useState } from 'react';
import { Button, Form, Input, Label, Message, Pagination, Popup, Table } from 'semantic-ui-react';
import { Link } from 'react-router-dom';
import { API, setPromptShown, shouldShowPrompt, showError, showInfo, showSuccess, timestamp2string } from '../helpers';
import {
API,
loadChannelModels,
setPromptShown,
shouldShowPrompt,
showError,
showInfo,
showSuccess,
timestamp2string
} from '../helpers';
import { CHANNEL_OPTIONS, ITEMS_PER_PAGE } from '../constants';
import { renderGroup, renderNumber } from '../helpers/render';
@@ -95,6 +104,7 @@ const ChannelsTable = () => {
.catch((reason) => {
showError(reason);
});
loadChannelModels().then();
}, []);
const manageChannel = async (id, action, idx, value) => {

View File

@@ -4,6 +4,7 @@ export const CHANNEL_OPTIONS = [
{ key: 3, text: 'Azure OpenAI', value: 3, color: 'olive' },
{ key: 11, text: 'Google PaLM2', value: 11, color: 'orange' },
{ key: 24, text: 'Google Gemini', value: 24, color: 'orange' },
{ key: 28, text: 'Mistral AI', value: 28, color: 'orange' },
{ key: 15, text: '百度文心千帆', value: 15, color: 'blue' },
{ key: 17, text: '阿里通义千问', value: 17, color: 'orange' },
{ key: 18, text: '讯飞星火认知', value: 18, color: 'blue' },

View File

@@ -1,11 +1,13 @@
import { toast } from 'react-toastify';
import { toastConstants } from '../constants';
import React from 'react';
import { API } from './api';
const HTMLToastContent = ({ htmlContent }) => {
return <div dangerouslySetInnerHTML={{ __html: htmlContent }} />;
};
export default HTMLToastContent;
export function isAdmin() {
let user = localStorage.getItem('user');
if (!user) return false;
@@ -29,7 +31,7 @@ export function getSystemName() {
export function getLogo() {
let logo = localStorage.getItem('logo');
if (!logo) return '/logo.png';
return logo
return logo;
}
export function getFooterHTML() {
@@ -196,4 +198,30 @@ export function shouldShowPrompt(id) {
export function setPromptShown(id) {
localStorage.setItem(`prompt-${id}`, 'true');
}
let channelModels = undefined;
export async function loadChannelModels() {
const res = await API.get('/api/models');
const { success, data } = res.data;
if (!success) {
return;
}
channelModels = data;
localStorage.setItem('channel_models', JSON.stringify(data));
}
export function getChannelModels(type) {
if (channelModels !== undefined && type in channelModels) {
return channelModels[type];
}
let models = localStorage.getItem('channel_models');
if (!models) {
return [];
}
channelModels = JSON.parse(models);
if (type in channelModels) {
return channelModels[type];
}
return [];
}

View File

@@ -1,7 +1,7 @@
import React, { useEffect, useState } from 'react';
import { Button, Form, Header, Input, Message, Segment } from 'semantic-ui-react';
import { useNavigate, useParams } from 'react-router-dom';
import { API, showError, showInfo, showSuccess, verifyJSON } from '../../helpers';
import { API, getChannelModels, showError, showInfo, showSuccess, verifyJSON } from '../../helpers';
import { CHANNEL_OPTIONS } from '../../constants';
const MODEL_MAPPING_EXAMPLE = {
@@ -56,60 +56,12 @@ const EditChannel = () => {
const [customModel, setCustomModel] = useState('');
const handleInputChange = (e, { name, value }) => {
setInputs((inputs) => ({ ...inputs, [name]: value }));
if (name === 'type' && inputs.models.length === 0) {
let localModels = [];
switch (value) {
case 14:
localModels = ['claude-instant-1', 'claude-2', 'claude-2.0', 'claude-2.1'];
break;
case 11:
localModels = ['PaLM-2'];
break;
case 15:
localModels = ['ERNIE-Bot', 'ERNIE-Bot-turbo', 'ERNIE-Bot-4', 'Embedding-V1'];
break;
case 17:
localModels = ['qwen-turbo', 'qwen-plus', 'qwen-max', 'qwen-max-longcontext', 'text-embedding-v1'];
let withInternetVersion = [];
for (let i = 0; i < localModels.length; i++) {
if (localModels[i].startsWith('qwen-')) {
withInternetVersion.push(localModels[i] + '-internet');
}
}
localModels = [...localModels, ...withInternetVersion];
break;
case 16:
localModels = ['chatglm_turbo', 'chatglm_pro', 'chatglm_std', 'chatglm_lite'];
break;
case 18:
localModels = [
'SparkDesk',
'SparkDesk-v1.1',
'SparkDesk-v2.1',
'SparkDesk-v3.1',
'SparkDesk-v3.5'
];
break;
case 19:
localModels = ['360GPT_S2_V9', 'embedding-bert-512-v1', 'embedding_s1_v1', 'semantic_similarity_s1_v1'];
break;
case 23:
localModels = ['hunyuan'];
break;
case 24:
localModels = ['gemini-pro', 'gemini-pro-vision'];
break;
case 25:
localModels = ['moonshot-v1-8k', 'moonshot-v1-32k', 'moonshot-v1-128k'];
break;
case 26:
localModels = ['Baichuan2-Turbo', 'Baichuan2-Turbo-192k', 'Baichuan-Text-Embedding'];
break;
case 27:
localModels = ['abab5.5s-chat', 'abab5.5-chat', 'abab6-chat'];
break;
if (name === 'type') {
let localModels = getChannelModels(value);
if (inputs.models.length === 0) {
setInputs((inputs) => ({ ...inputs, models: localModels }));
}
setInputs((inputs) => ({ ...inputs, models: localModels }));
setBasicModels(localModels);
}
};